Verifying Graph Transformation Systems with
Description Logics

Jon Haél Brenas', Rachid Echahed?, and Martin Strecker?[0000—0001-9953—9871]

L UTHSC - ORNL, Memphis, Tennessee, USA, jhael@uthsc.edu
2 CNRS and University Grenoble-Alpes, LIG Lab. Grenoble, France,
rachid.echahed@imag. fr
3 Université de Toulouse, IRIT, Toulouse, France, martin.strecker@irit.fr

Abstract. We address the problem of verification of graph transforma-
tions featuring actions such as node merging and cloning, addition and
deletion of nodes and edges, node or edge labeling and edge redirection.
We introduce the considered graph rewrite systems following an algo-
rithmic approach and then tackle their formal verification by proposing
a Hoare-like weakest precondition calculus. Specifications are defined as
triples of the form {Pre}(R,strategy){Post} where Pre and Post are
conditions specified in a given Description Logic (DL), R is a graph
rewrite system and strategy is an expression stating in which order
the rules in R are to be performed. We prove that the proposed calcu-
lus is sound and characterize which DL logics are suited or not for the
targeted verification tasks, according to their expressive power.

1 Introduction

Graphs, as well as their transformations, play a central role in modelling data
in various areas such as chemistry, civil engineering or computer science. In
many such applications, it may be desirable to be able to prove that graph
transformations are correct, i.e., from any graph (or state) satisfying a given set
of conditions, only graphs satisfying another set of conditions can be obtained.

The correctness of graph transformations has attracted some attention in
recent years, see e.g., [24,16,21,6,5,19,3,9]. In this paper, we provide a Hoare-like
calculus to address the problem of correctness of programs defined as strategy
expressions over graph rewrite rules. Specifications are defined as triples of the
form {Pre}(R, strategy){Post} where Pre and Post are conditions, R is a graph
rewrite system and strategy is an expression stating how rules in R are to be
performed. Our work is thus close to [9,16,21] but differs both on the class of
the considered rewrite systems as well as on the logics used to specify Pre and
Post conditions.

The considered rewrite rules follow an algorithmic approach where the left-
hand sides are attributed graphs and the right-hand sides are sequences of el-
ementary actions [14]. Among the considered actions, we quote node and edge
addition or deletion, node and edge labelling and edge redirection, in addition



to node merging and cloning. To our knowledge, the present work is the first to
consider the verification of graph transformations including node cloning.

Hoare-like calculi for the verification of graph transformations have already
been proposed with different logics to express the pre- and post-conditions.
Among the most prominent approaches figure nested conditions [16,21] that
are explicitly created to describe graph properties. The considered graph rewrite
transformations are based on the double pushout approach with linear spans
which forbid actions such as node merging and node cloning.

Other logics might be good candidates to express graph properties which go
beyond first-order definable properties such as monadic second-order logic [13,22]
or the dynamic logic defined in [5]. These logics are undecidable in general and
thus either cannot be used to prove correctness of graph transformations in an
automated way or only work on limited classes of graphs.

Starting from the other side of the logical spectrum, one could consider the
use of decidable logics such as fragments of Description Logics (DLs) to specify
graph properties [1,8]. DLs [4] are being used heavily in formal knowledge rep-
resentation languages such as OWL [2]. In this paper we consider the case where
Pre and Post conditions are expressed in DLs and show which Description Logic
can be used or not for the targeted verification problems.

The use of decidable logics contributes to the design of a push-button tech-
nology that gives definite and precise answers to verification problems. Model-
checking [24] provides an alternative to our approach with ready to use tools,
such as Alloy [7,18] or GROOVE [15]. The main issue with those tools is that
they are restricted to finding counter-examples, instead of a full verification,
when the set of possible models is infinite (or too large to be checked in a timely
manner), and thus provide only part of the solution. On the other hand, tech-
niques based on abstract interpretation (such as [23]) are not guaranteed to give
correct answers and have a risk of false positive or negative.

The paper is organized as follows. Section 2 provides the considered defi-
nitions of graphs and the elementary graph transformation actions. Section 3
recalls useful notions of Descriptions Logics. In Section 4, we define the consid-
ered graph rewrite systems and strategies. Section 5 provides a sound Hoare-like
calculus and states which DLs can be used or not for the considered program
verification problems. Section 6 concludes the paper. The missing proofs and
definitions can be consulted in [10].

2 Preliminaries

We first define the notion of decorated graphs we consider in this paper.

Definition 1 (Decorated Graph). Let C (resp. R) be a set of node labels
(resp. edge labels). A decorated graph G over a graph alphabet (C, R) is a tuple
(N, E, &y, g, s, t) where N is a set of nodes, E is a set of edges, Py is
a node labeling function, & : N — P(C), Pg is an edge labeling function,
Pp : E — R, s is a source function s : F — N and t is a target function
t:E— N.



Notice that nodes are decorated by means of subsets of C while edges are
labeled with a single element in R.

Graph transformation systems considered in this paper follow an algorithmic
approach based on the notion of elementary actions introduced below.

Definition 2 (Elementary action, action). Let Cy (resp. Rg) be a set of
node (resp. edge) labels. An elementary action, say a, may be of the following
forms:

— a node addition addy (i) (resp. node deletion dely (i)) where i is a new node
(resp. an existing node). It creates the node i. i has no incoming nor outgoing
edge and it is not labeled (resp. it deletes i and all its incident edges).

— a node label addition addc (i, ¢) (resp. node label deletion delc(i,c)) where
i is a node and c is a label in Cy. It adds the label ¢ to (resp. removes the
label ¢ from) the labeling of node i.

— an edge addition addg/(e,i,j,7) (resp. edge deletion delg(e,i,j,1)) where e
is an edge, © and j are nodes and r is an edge label in Ry. It adds the edge e
with label v between nodes i and j (resp. removes all edges with source i and
target j with label r).

— a global edge redirection ¢ > j where ¢ and j are nodes. It redirects all
incoming edges of i towards j.

— a merge action mrg(i,j) where i and j are nodes. This action merges the
two nodes. It yields a new graph in which the first node i is labeled with the
union of the labels of i and j and such that all incoming or outgoing edges
of any of the two nodes are gathered.

— a clone action ¢l(4, 7, Lin, Lout, Li_ins Li_out, Li_toop) where i and j are nodes
and Lin, Lout, Li_in, Li_ouwt and Ly jo0p are subsets of Ry. It clones a node ¢ by
creating a new node j and connects j to the rest of a host graph according to
different information given in the parameters Ly, Lout, Li_in, Li_outs Li_ioop
as specified further below.

The result of performing an elementary action a on a graph G = (N¢, E®,
o5, 0, 59, t%), written G[a], produces the graph G' = (NG/, EG',Q%,Qg, s¢,
tG/) as defined in Figure 1. A (composite) action, say «, is a sequence of ele-
mentary actions of the form a = ay;as;...;a,. The result of performing a on a
graph G is written Gla]. Gla; o] = (Gla])[a] and G[e] = G where € is the empty
sequence.

The elementary action ¢l(4, J, Lin, Lout, Li_ins Li_out, Li_100p) might be not easy
to grasp at first sight. It thus deserves some explanations. Let node j be a
clone of node i. What would be the incident edges of the clone j?7 Answering
this question is not straightforward. There are indeed different possibilities to
connect j to the neighborhood of i. Figure 2 illustrates such a problem where
node ¢, a clone of node ¢;, has indeed different possibilities to be connected to
the other nodes. In order to provide a flexible clone action, the user may tune
the way the edges connecting a clone are treated through the five parameters
Liny Louts Li_ins Li_out, Li_ioop- All these parameters are subsets of the set of edge
labels Ry and are explained informally below:



— Ly (resp. Loyt) indicates that every incoming (resp. outgoing) edge e of i,
which is not a loop, and whose label is in L;;, (resp. Lyy:) is cloned as a new
edge €’ such that s(e’) = s(e) and t(e’) = j (resp. s(e’) = j and t(e/) = t(e)).

— L, indicates that every self-loop e over ¢ whose label is in L;_;, is cloned
as a new edge ¢’ with s(e’) =i and t(e’) = j. (see the blue arrow in Fig. 2).

— L oyt indicates that every self-loop e over ¢ whose label is in L; ., is cloned
as a new edge ¢’ with s(e¢’) = j and t(e’) = i. (see the red arrow in Fig. 2).

— Li_j00p indicates that every self-loop e over ¢ whose label is in L; j0p is cloned
as a new edge ¢’ which is a self-loop over j, i.e, s(e’) = j and t(e’) = j. (see
the self-loop over node ¢} in Fig. 2).

The semantics of the cloning action ¢l(%, J, Lin, Louts Li_in, Li_out, Li_toop) as
defined in Fig. 1 use some auxiliary pairwise disjoint sets representing the new
edges that are created according to how the clone j should be connected to the
neighborhood of node i. These sets of new edges are denoted E,,, E ;. E} ;... E] .+
and E oop- They are provided with the auxiliary bijective functions in, out, [_in,

l_out and [_loop as specified below.

1. E!, is in bijection through function in with the set {e¢ € E®| t%(e) =
iNs%(e) #iNDE(e) € Lin},

2. E!, is in bijection through function out with the set {e € E¢| s%(e) =
iNtY(e) #iNDE(e) € Lout},

3. Ej,, is in bijection through function I_in with the set {e € EY| s%(e) =
t%(e) =i ADE(e) € Liin},

4. E] ., is in bijection through function l_out with the set {e € E%| s%(e) =
t%(e) =i A DG (e) € Liout},

5. EJ 150, is in bijection through function I loop with the set {e € E%| s (e) =
t%e) =i AN DE(e) € Litoop})-

Informally, the set E, contains a copy of every incoming edge e of node i
(i.e., t%(e) = i), which is not a self-loop (i.e., s%(e) # i), and having a label in
Lin, (i.e., ®%(e) € Lip). Liy, is thus used to select which incoming edges of node
i are cloned. The other sets E ,, E; ., E] ., and E/ are defined similarly.

outr l_in> l_loop
Ezample 1. Let A be the graph of Fig. 2a, over an alphabet (Cy, Ro) such that
{a,b} C Ry. Performing the action cl(q1,q}, Ro, Ro, X,Y, Z) yields the graph

presented in Fig. 2b where the blue-plain (resp. red-dashed, purple-dotted) edge
exists iff X (resp. Y, Z) contains the label {a}.

Readers familiar with algebraic approaches to graph transformation may rec-
ognize the cloning flexibility provided by the recent AGREE approach [11]. The
parameters of the clone action reflect somehow the embedding morphisms of
AGREE-rules. Cloning a node according to the approach of Sesquipushout [12]
could be easily simulated by instantiating all the parameters by the full set of
edge labels, i.e., ¢l(i, j, Ro, Ro, Ro, Ro, Ro)-



If o = addc(i,c) then:
N¢ = N¢ E¢ = E°

/ G (nyu{ctifn=1

G R Y

PN (n)_{ég(n) ifn#i
oG = &g, 59 =59, 19 =19
If « = addg(e,i,j,r) then:
NG/ =N o§ =5
E¢ = E°U{e}

/ r ife' =e
PE () = {@g(e') ife' #e
s () =s9(e) if e #e 5% (e) =i
t9 (&) =9 () if € # e, t% (e) = j
If o = addn (i) then:
NS = N U {i} where i is a new node
EY = B%, 0% = 0G,s% =% 1% =1¢
' 0 ifn=1

o5 (n) = {qﬁg(n) if n i

If o = deln (i) then:

N = N9\{i}

ES = E9\{e|s%(e) =iV t%(e) =i}
@%' is the restriction of % to N¢
@gl is the restriction of % to EY
s% is the restriction of s¢ to ES’
%" is the restriction of t© to EY'

If « =i> j then:

NG — N€, EC — EG

o5 =05, 0§ = 0§, = ¢

o j if t%e) =i

£ () = {tG(e) if tGEe; #1

If o = mrg(i,j) then:

N¢ = NE\{j}, B = E, 8% (¢) = 25(e)

' PR VDK (j) if n=1i
ay_ ] PN N
ey (n) = {@% (n) otherwise
oy i if s%(e) =5
7 (e) = {sc(e) otherwise
o, fi if t%e) = j
£ () = {tG(e) otherwise

If o = delc(i,c) then:
NG — NG g6 — gG

If o = delg(e,i,j,r) then:

N = N9, o5 = oS

EY = ES\{a € E° |

5%(a) =1, t%(a) = 7 and $%(a) = r}
@%’ is the restriction of % to EY

5% is the restriction of s¢ to ES
%" is the restriction of t¢ to E¢’
If = Cl(i, j, Lin, Lout, LZJH, Ll,out; Ll,loop) then:
NY = N°u {3}
ES = ES UE}L, UEyw UE] iy UE] 0 U E] o0
&S (n) = {@g(z) if n =J

@5 (n) otherwise

oG (in(e)) ife€ El,
oG (out(e)) ife€ Ehy,
5% (e) = oG (l1n(e)) ifee E,
EA T @G (1out(e)) ife€ Bl .,
DG (1-loop(e)) if € € E 1o0p
P (e) otherwise
s%(in(e)) if e € El,
i ifee EL,
leld _ 7 if e (S El/J,n
ST =9 if e € B pus
j if e € Ef jo0p
G .
57 (e) otherwise
j ifee Ej,
t%(out(e)) if e € El,
leld o ] lf e e El/,z'n
) =91 if e € F]
j if e € Ef jo0p
G .
t%(e) otherwise

Fig.1: G’ = G[a], summary of the effects of the elementary actions: addy (%),
deln (i), addc(i,c), delc(i,c), addg(e,i,j,r), delg(e), i > j, mrg(i,j) and

Cl(i’ ja Lina Lout, Ll,ina Ll,outa Ll,loop)~



(a) A graph and (b) the possible results of cloning node ¢i as node q;

Fig. 2: Example of application of the elementary action Clone

3 DL logics

Description Logics (DLs) are a family of logic based knowledge representation
formalisms. They constitute the basis of well known ontology languages such as
the Web Ontology Language OWL [2]. Roughly speaking, a DL syntax allows
one to define Concept names, which are equivalent to classical first-order logic
unary predicates, Role names, which are equivalent to binary predicates and
Individuals, which are equivalent to classical constants. There are various DLs
in the literature, they mainly differ by the logical operators they offer to con-
struct concept and role expressions or axioms. In this paper we are interested
in extensions of the prototypical DL ALC. We recall that these extensions are
named by appending a letter representing additional constructors to the logic
name. We focus on nominals (represented by O), counting quantifiers (Q), self-
loops (Self), inverse roles (Z) and the universal role (i). For instance, the logic
ALCUO extends ALC with the universal role and nominals (see [4], for details
about DL names). Below we recall the definitions of DL concepts and roles we
consider in this paper.

Definition 3 (Concept, Role). Let A = (Cy, Ro, O) be an alphabet where Cqg
(resp. Ro and O) is a set of atomic concepts (resp. atomic roles and nominals).
Let ¢y € Cy, 19 € Ro, 0 € O, and n an integer. The set of concepts C' and roles
R are defined by:

C:=T|ec|IR.C|-C|CVC|o(nominals)|IR.Self (self loops)
| (< n R C) (counting quantifiers)
R :=1g | U (universal role) | R~ (inverse role)
For the sake of conciseness, we define L. = =T, CAC' = =(-CV-C"), VR.C =
—(3R.=C) and (> n RC)=—-(< n RC).

The concepts Cy;. and roles R of the logic ALC, which stand for “Attribu-
tive concept Language with Complement”, are subsets of the concepts and roles
given above. They can be defined as follows:

Cate :=T ‘ Co | AR.Cue | ~Caic ‘ Caic V Caic and Raie =10



Definition 4 (Interpretation). An interpretation over an alphabet (Cy, Ro, O)
is a tuple (AZ,-T) where - is a function such that & C AL, for every atomic
concept ¢y € Co, 18 C AT x AL, for every atomic role 1o € Rg, of € AT for
every nominal o € O. The interpretation function is extended to concept and
role descriptions by the following inductive definitions:

I:AI

—\C)I:AI\CI

cvDY=ctuDp?

3R.C)t = {n € AT|FIm, (n,m) € RT and m € CT}

JR.Self )T = {n € A%|(n,n) € R}

< nRC)Y ={0e AT|#({m € AZ|(6,m) € RT and m € C*}) < n}
R ={(n,m) € AT x A%|(m,n) € RT}

T _ AI % AI

\
—

o~ o~

—~

I
——

o

Definition 5 (Interpretation induced by a decorated graph). Let G =
(N,E,®n,Pg,s,t) be a graph over an alphabet (C,R) such that Co U O C C
and Ry C R. The interpretation induced by the graph G, denoted (AY,-9), is
such that A9 = N, cg ={n € Nlcg € Pn(n)}, for every atomic concept ¢y € Cyp,
r§ = {(n,m) € N x N|[3e € E.s(e) =n and t(e) = m and ro = dg(e)}, for
every atomic role rg € Rg, 09 = {n € N|o € ®x(n)} for every nominal o € O.
We say that a node n of a graph G satisfies a concept c, written n |= c if n € c9.
We say that a graph G satisfies a concept ¢, written G |= c if ¢ = N, that is
every node of G belongs to the interpretation of ¢ induced by G. We say that a
concept ¢ is valid if for all graphs G, G [ c.

To illustrate the different notions introduced in this paper, we use a running
example inspired from ontologies related to the Malaria surveillance.

Ezxample 2. Malaria is an infectious, vector-borne disease that overwhelmingly
affects Sub-Saharan Africa. In order to reduce its incidence, one of the most
widely used techniques is to install long lasting insecticide-treated nets (LLINS).
Several materials can be used to produce LLINs and they can be treated with
many different insecticides. Each insecticide has a mode of action that charac-
terizes how it affects mosquitoes. In order to avoid the appearance of insecticide
resistances in mosquito populations, it is required to use LLINs with different
modes of actions.

In this example, we start by giving examples of concepts, roles and nominals
related to Malaria surveillance. Let Ao = (Crals Rimais Omai), be an alpha-
bet such that {LLIN, Insecticide, M aterial, House, ModeO f Action} C Cpai,
{has_ins, has_mat, has_moa,ins_in} C Rpa and {ig,l,mat, DDT} C Opar-
We can then express as concepts that g is an insecticide (3U.i, A Insecticide),
that there exists a LLIN using the material mat (3U.mat A Fhas-mat=.LLIN)
or that all LLINs except for [ are installed in at most one house (VU.LLIN =
((< 2inszin House) V1)).



4 Graph Rewrite Systems and Strategies

In this section, we introduce the notion of DL decorated graph rewrite systems.
These are extensions of the graph rewrite systems defined in [14] featuring new
actions over graph structures decorated over an alphabet (C, R) consisting of
concepts C and roles R of a given DL logic.

Definition 6 (Rule, DLGRS). A rule p is a pair (L, o) where L, called the
left-hand side (lhs), is a decorated graph over (C, R) and «, called the right-hand
side (ths), is an action. Rules are usually written L — «. A DL decorated graph
rewrite system, DLGRS, is a set of rules.

s
po:  (1: LLIN A Jinsin. T 5 (i DDT deln (1)

l': LLIN

has_ins ¢ ¢ ins-in has_ins
pr (7 : Insecticide) (h, : House) (i’ : Insecticide)
has_moa has_moa
(m : ModeO fAction) (m’ : ModeO f Action A ﬁm)
has_ins
i (o Insecticdd) mrg(L.1)

has_ins

(' : LLIN AVins_in. L A1)

Fig. 3: Rules used in Example 3. In rule p1, L= {0, {has_ins, has_mat},,0,0}.

Ezample 8. We now define some rules that can be applied to our malaria exam-
ple. These rules are given in Fig. 3. Rule pg searches for a LLIN () using DDT



as an Insecticide and installed in a place, i.e., such that | = Jins_in. T. As DDT
is highly dangerous to human health, [ is then deleted.

Rule p; changes the LLIN installed in a House. As aleady said in Example 2,
one has to avoid using insecticides with the same mode of action twice in a row
in the same House. p; thus searches for a LLIN (1) that is installed in a House (h)
which has an Insecticide (i) with a given ModeOfAction (m). It also searches for
a LLIN (I) that has an Insecticide (i') with a different ModeOfAction (m’ where
m’ = —-m). A new LLIN (I”) is then created by cloning I’, the edge, e, between
I and h is removed (it loses its label) and a new one, €, is created between [
and h labeled with ins_in.

The idea behind rule ps is that there are two kinds of LLINs: those that are
currently used, i.e. installed in some House, and those that are used as templates
for creating new LLINs by cloning with p;. In order to limit the number of
templates, if two LLINs which are not installed anywhere, i.e., they are models
of Vins_in. L, and they use the same Insecticide, then they can be considered as
the same, and thus can be merged into one template by rule ps.

Definition 7 (Match). A match h between a lhs L and a graph G is a pair of
functions h = (KN, hE), with kN : N¥ — NY and h® : EL — E€ such that:
1.¥n e Nt Ve e ok (n),hN(n) Ec  2.Ve € EL,®%(hE(e)) = PL(e)

3. Ve € BEX s (hF(e)) = hV (st (e)) 4. Ve € EL t9(hF(e)) = hN (tE(e))

The third and the fourth conditions are classical and say that the source
and target functions and the match have to agree. The first condition says that
for every node, n, of the lhs, the node to which it is associated, h(n), in G has
to satisfy every concept in @% (n). This condition clearly expresses additional
negative and positive conditions which are added to the “structural” pattern
matching. The second condition ensures that the match respects edge labeling.

Definition 8 (Rule application). Let G be a graph decorated over an alphabet
(Co, Ro) consisting of atomic concepts Cy and roles Ro of a given DL logic.
G rewrites into graph G' using a rule p = (L,«) iff there exists a match h
from L to G. G' is obtained from G by performing actions in h(a)*. Formally,
G’ = G[h(a)]. We write G —, G'.

Very often, strategies are used to control the use of possible rules in rule-based
programs (e.g. [26,20]). Informally, a strategy specifies the application order of
different rules. It does not indicate where the matches are to be tried nor does
it ensure unique normal forms.

Definition 9 (Strategy). Given a graph rewrite system R, a strategy is a word
of the following language defined by s, where p is any rule in R:
s:=¢€ (Empty Strategy) p (Rule) s® s (Choice)

s; 8 (Composition) s* (Closure) p?  (Rule Trial)

p! (Mandatory Rule)

4 h(a) is obtained from « by replacing every node name, n, of L by h(n).



)

Informally, the strategy ”s1;s2” means that strategy s; should be applied
first, followed by the application of strategy so. The expression s; @ s means
that either the strategy s, or the strategy ss is applied. The strategy p* means
that rule p is applied as many times as possible. Notice that the closure is the
standard “while” construct, that is the strategy s* applies s as much as possible.

Example 4. Let us assume that we want to get rid of DDT-treated LLINs, change
the LLINs in 1 or 2 Houses and then remove duplicate templates. In such a
situation, one can use the strategy: pg; (p1 @ (p1;01)); 05

We write G =5 G’ to denote that graph G’ is obtained from G by applying
the strategy s. In Fig. 4, we provide the rules that specify how strategies are
used to rewrite a graph. For that we use the formula App(s) such that for all
graphs G, G |= App(s) iff the strategy s can perform at least one step over G.
This formula is specified below.

e G = App(p) iff there exists a match h from the left-hand side of p to G
G = App(p!) iff there exists a match h from the left-hand side of p to G
GEApp(e) o GEApp(so®s1)iff G = App(so) or G = App(s1)
G = App(s;) o G FE App(so;s1) iff G = App(so)
G = App(p?)
Whenever G |= App(s), this does not mean that the whole strategy, s, can
be applied on G, but it rather ensures that at least one step of the considered
strategy can be applied.

G=. G G'=: ¢

e (Empty rule) . o (Strategy composition)
e 50581
G =y G G=s G
——— (Choice left) — (Choice right)
G =soms; G G =spms; G
G - App(s G=;G" G'"=,+G GI}=App(s)
% (Closure false) G—.a (Closure true)
G i App(p) G = App(p) G —, G’
2 PPV (Rule Fals Rule True
Go, T (Rule False) G=,d ( )
GHA G EApp(p) G—, G
% (Mandatory Rule False) =, a . (Mandatory Rule True)
p! o
GLA G E App(p) G =, G ‘
% (Rule Trial False) G = . . (Rule Trial True)
p? r?

Fig. 4: Strategy application rules




Notice that the three strategies using rules (i.e. p, p! and p?) behave the same
way when G = App(p) holds, as shown in Figure 4, but they do differ when
G £~ App(p). In such a case, p can yield any graph, denoted by T, (i.e. the
process stops without an error), p! stops the rewriting process with failure and
p? ignores the rule application and moves to the next step to be performed, if
any, of the considered strategy.

The formula App has to be able to express the existence of a match in the
considered logic. However, assuming the nodes of the lhs are explicitly named,
L = ({no,...,nx}, E,Pn,PE,s,t), for a rule p, one may specify the existence
of a match in a more direct way when using explicitly one nominal o; for each
node n; of the lhs. That is to say, one can define a predicate App(p, {oo, ..., 0k}),
also noted App(p), such that G = App(p, {00, - .., or}) iff there exists a match h
such that hy(ng) = og, oo hn(ng) = og. This requires less expressive power to
express than App. We also define N App(p) = —~App(p).

Ezample 5. For the rule py of Figure 3, App(p2, {lo,%0,1,}) = FU.(Ip A LLIN A
Vins_in.LA3has_ins.(igAInsecticide A\Ihas_ins~ .(I)ALLIN A=l AYins_in.L))).

5 Verification

In this section, we follow a Hoare style verification technique to specify properties
of DLGRS’s for which we establish a sound proof procedure.

Definition 10 (Specification). A specification SP is a triple {Pre}(R, s){Post}
where Pre and Post are DL formulas, R is a DLGRS and s is a strategy.

Ezample 6. Continuing with the malaria example, we give a simple example of a
specification. We first define a precondition as every LLIN is installed in at most
one House: Pre = YU.LLIN = (< 2 ins_in House). We can consider a post-
condition having the same constraints as the precondition augmented with the
fact that no House is equipped with a LLIN using DDT: Post = (VU.LLIN =
(< 2 ins_in House)) A (YU.House = Vins_in~ NYhas_ins.~DDT). To complete
the specification example, we consider the DLGRS given Fig. 3 and the strategy
as proposed in Example 4.

Definition 11 (Correctness). A specification SP is said to be correct iff for
all graphs G, G' such that G =4, G' and G |= Pre, then G' |= Post.

In order to show the correctness of a specification, we follow a Hoare-calculus
style [17] by computing weakest preconditions. For that, we give in Fig. 5 the
definition of the function wp which yields the weakest precondition of a formula
@ w.r.t. actions and strategies.

The weakest precondition of an elementary action, say a, and a postcondition
Q is defined as wp(a, Q) = Qla] where Qa] stands for the precondition consisting
of @ to which is applied a substitution induced by the action a that we denote
by [a]. The notion of substitution used here follow the classical ones from Hoare-
calculi (e.g., [25]).



Definition 12 (Substitutions). A substitution, written [a], is associated to
each elementary action a, such that for all graphs G and DL formula ¢, (G |

¢la]) & (Gla] = ¢).

When writing a formula of the form ¢[a], the substitution [a] is used as a
new formula constructor whose meaning is that the weakest preconditions for
elementary actions, as defined above, are correct. DL logics are not endowed with
such substitution constructor. The addition of such a substitution constructor
to a given description logic is not harmless in general. That is to say, if ¢ is
a formula of a DL logic £, ¢[a] is not necessarily a formula of £. Hence, only
closed DL logics under substitutions can be used for verification purposes. The
two following theorems characterize non trivial fragments of DL logics which are
closed, respectively not closed, under substitutions.

Theorem 1. The description logics ACCUO, ALCUOL, ALCQUOTL, ALCUOSelf,
ALCUOLSelf, and ALCOUOZSelf are closed under substitutions

The proof of this theorem consists in providing a rewrite system which trans-
forms any formula with substitutions into an equivalent substitution free formula
in the considered logic. Details of such a rewrite system can be found in [10].

Theorem 2. The description logics ALCOUO and ALCQUOSElf are not closed
under substitutions.

The proof of the above theorem is not straightforward. It uses notions of
bisimulations induced by the considered logics. Two bisimilar models are pro-
vided which do not fulfill the same set of formulas. Details of the proof can be
found in [10].

wp(a, Q) = Qld] wp(a; a, Q) = wp(a, wp(a,Q))
wp(e, Q) = Q wp(so; S1, Q) = wp(’SOawp(Sla Q))
wp(so @ s1, Q) = wp(s0, Q) A wp(s1,Q) wp(s™, Q) = invs

wp(p, Q) = App(p) = wp(a,, Q) wp(p!, Q) = App(p) N wp(a,, Q)

wp(p?, Q) = (App(p) = wp(a,, Q) A (~App(p) = Q)

Fig. 5: Weakest preconditions w.r.t. actions and strategies, where a (resp. o, o)
stands for an elementary action (resp. action, the right-hand side of a rule p)
and @ is a formula

In presence of DL logics closed under substitutions, the definitions of wp(s, Q)
for strategy expressions consisting of the Empty Strategy, the Composition or the
Choice operators are quite direct (see, Fig. 5). The definitions of wp(s, Q) when
strategy s is a Rule, Mandatory Rule or Rule Trial are not the same depending
on what happens if the considered rewrite rule cannot be applied. When a rule p



can be applied, then applying it should lead to a graph satisfying ). When the
rule p cannot be applied, wp(p, @) indicates that the considered specification
is correct; while wp(p!, Q) indicates that the specification is not correct and
wp(p?, Q) leaves the postcondition unchanged and thus transformations can
move to possible next steps.

As for the computation of weakest preconditions for the Closure of strategies,
it is close to the while statement. It requires an invariant invs to be defined,
wp(s*, Q) = invs, which means that the invariant has to be true when entering
the iteration for the first time. On the other hand, it is obviously not enough to be
sure that @ will be satisfied when exiting the iteration or that the invariant will
be maintained throughout the execution. To make sure that iterations behave
correctly, we need to introduce some additional verification conditions computed
by means of a function vec, defined in Fig. 6.

vele, @) = wvelp, Q) = velpl, Q) = ve(p?, Q) = T (true)

ve(so; 51, Q) = ve(so, wp(s1, Q)) Awve(s, Q)

ve(so ® s1, Q) = ve(so, Q) A ve(s1, Q)

ve(s™, Q) = ve(s, invs) A (invs A App(s) = wp(s,invs)) A (tnvs A = App(s) = Q)

Fig. 6: Verification conditions for strategies.

As the computation of wp and vc requires the user to provide invariants, we
now introduce the notion of annotated strategies and specification.

Definition 13 (Annotated strategy, Annotated specification). An an-
notated strategy is a strategy in which every iteration s* is annotated with an
invariant invs. It is written s*{invs}. An annotated specification is a specifica-
tion whose strategy is an annotated strategy.

Ezxample 7. As the strategy introduced in Example 4 contains two closures, we
need to define two invariants. We choose invy = Pre and invy, = Post. The
annotated strategy we use is thus AS = p§{invo}; (p1 ® (p1;p1)); p5{inve}.

Definition 14 (Correctness formula). We call correctness formula of an
annotated specification SP = {Pre}(R, s){Post}, the formula : correct(SP) =
(Pre = wp(s, Post)) A vc(s, Post).

Ezxample 8. The specification of the considered running example is thus
{Pre}(R,s){Post}, where Pre and Post are those introduced in Example 6, the
rules R are those of Example 3 and the annotated strategy s is the strategy AS
as defined in Example 7.

Theorem 3 (Soundness). Let SP = {Pre}(R, s){Post} be an annotated spec-
ification. If correct(SP) is valid, then for all graphs G, G' such that G = G',
G = Pre implies G' |= Post.



The proof is done by structural induction on strategy expressions (see [10]).

Ezample 9. We now compute the correctness formula of the specification of Ex-
ample 8: corr = (Pre = wp(AS,Post)) A ve(AS,Post).

By applying the weakest precondition rules, wp(AS,Post)) = wp(ps, wp((p1®

p1; p1); ps,Post)) = invg. Thus: corr = (Pre = invg) A ve(AS,Post).

Let us now focus on ve(AS,Post). For ease of reading, let us write S =

(p1 ® (p1;p1)); p5{inve}. By applying the rules for the verification conditions,
one gets that ve(AS,Post) = ve(pg, wp(S1,Post)) Ave(Sy, Post). We will discuss
the resulting subformulas.

1. We now focus on the first formula, vc(pg, wp(Si,Post)). By applying the
rules for the verification conditions, one gets that ve(pf, wp(Si,Post)) =
ve(po, invg) A (invg A App(po, {lo,i0}) = wp(po, inve)) A (invg AN App(po) =
wp(Sy,Post)). The rules state that ve(p, Q) = T; thus it is possible to get
rid of the first formula ve(pg, invg).

Similarly, wp(po, invo) = App(po, {lo,40}) = invo[dely (lo)].

Altogether: ve(pf, wp(S1,Post)) =

(invoAApp(po, {lo, i0}) = involdeln (lo)]) A(invo AN App(po) = wp(S1,Post)).
Let us now focus on the last wp. Unfolding the definition of wp(S;,Post) =
wp(p1 @ p1; p1, wp(ps,Post)). Applying the rules of weakest preconditions
yields wp(p1, wp(ps,Post)) A wp(p1, wp(p1, wp(ps,Post))). From the defini-
tion of the weakest precondition for a closure, one gets that wp(p}, Post) =
invy. By applying the rule for the weakest precondition of a rule application,
one gets that:

wp(p1, inve) = App(p1,{l1, h1,i1, m1, 11,4}, m}}) = invaoy

and

wp(p1, wp(p1,inve)) = App(p1, {l2, ha, iz, ma, I3, i5, my}) =
(APP(Pb{l37h37i3am3al§ai/3>m§}) :>’in1)20'3)02 -

where o; = [addg (I, hi, ins_in)][delg (17, by, ins_in)][cl (1,17, L)].

. Let us now focus on the second formula. Let us apply the verification condi-
tions rules, ve(Sy, Post) = ve(pr @ p1; p1, wp(ps, Post)) Ave(ps, Post). More
applications of those rules yield ve(py @ p1; p1, wp(ps,Post)) = T.

Thus: ve(Sh,Post) = ve(ph, Post)

We apply again the rule for closures to ve(ps,Post) and get ve(ps, inve) A
(App(p2,{la,34,14}) N inve = wp(ps,inve)) A (invg A N App(p2) = Post).
Applying the verification rules yields ve(pa, inve) = T.

Applying the weakest precondition to wp(pa, invy) yields App(pa, {l4, 44,1} })
inva[mrg(ly,ly)] and thus: ve(Si,Post) =

(App(p2,{la, 34,14 }) Ninvy = inva[mrg(ly,1})]) A (inve A N App(p2) = Post)

4

To sum up, the correctness formula is corr = (Pre = invg)A

(invo A App(po, {lo, io}) = invo[deln (Io)])A

(invo A N App(po) A App(p1, {l1, h1,ir, ma, 1, d5,my}) = invaor)A

(invg A N App(po) N App(p1, {la, ha,ia, ma, lh, 45, mb5})A

App(p1,{ls, hs, i3, ms, 15,15, m5})oa = invioso) A

(inve A App(p2, {la, 14,1} }) = inva[mrg(le,1))]) A (inve A N App(p2) = Post).



The intermediate lines are the result of (1) and the last line is the result of
(2). Furthermore,

— Pre, Post, invg and invy are defined in Example 6 and Example 7;

— App(po,{lo,i0}) = 3U.(Io AN LLIN A Jins_in. T A Shas_ins.(iop A DDT));

— NApp(po) =VU.(-LLIN V Vins_in.1 V Vhas_ins.~DDT);

— App(p1, {li; hiy iy, my, 15,35, ms}) = 3U.(I; A LLIN A Jinszin.(h; A House) A
Jhas_ins.(i; A Insecticide A Fhas_moa.(m; A ModeO f Action))) A JU.(I; A
Jhas_ins.(i; A has_moa.(m; A ModeO f Action A —m;)));

— App(pa, {la,i4,1}}) = AU.(I4ALLIN AVins_in. L AJhas_ins.(isNInsecticide
Jhas_ins~.(Iy NLLIN AYins_in.L A =ly))) and

— NApp(p2) = VU.Insecticide = (< 2 has_sins~ (LLIN AVins_in.l)).

6 Conclusion

We have presented a class of graph rewrite systems, DLGRSs, where the lhs’s
of the rules can express additional application conditions defined as DL logic
formulas and rhs’s are sequences of actions. The considered actions include node
merging and cloning, node and edge addition and deletion among others. We
defined computations with these systems by means of rewrite strategies. There
is certainly much work to be done around such systems with logically decorated
lhs’s. For instance, the extension to narrowing derivations would use an involved
unification algorithm taking into account the underlying DL logic. We have also
presented a sound Hoare-like calculus and shown that the considered verification
problem is still decidable with a large class of DL logics. Meanwhile, we pointed
out two rich DL logics which are not closed under substitutions and thus cannot
be candidate for verification issues. Future work includes an implementation of
the proposed verification technique (work in progress) as well as the investigation
of more expressive logics with connections to some SMT solvers.

References

1. S. Ahmetaj, D. Calvanese, M. Ortiz, and M. Simkus. Managing change in graph-
structured data using description logics. In Proc. of the 28th AAAI Conf. on
Artificial Intelligence (AAAI 2014), pages 966-973. AAAI Press, 2014.

2. G. Antoniou, , G. Antoniou, G. Antoniou, F. V. Harmelen, and F. V. Harmelen.
Web ontology language: Owl. In Handbook on Ontologies in Information Systems,
pages 67-92. Springer, 2003.

3. M. Asztalos, L. Lengyel, and T. Levendovszky. Formal specification and analysis
of functional properties of graph rewriting-based model transformation. Software
Testing, Verification and Reliability, 23(5):405-435, 2013.

4. F. Baader. Description logic terminology. In The Description Logic Handbook:
Theory, Implementation, and Applications, pages 485-495. 2003.

5. P. Balbiani, R. Echahed, and A. Herzig. A dynamic logic for termgraph rewriting.
In 5th International Conference on Graph Transformations (ICGT), volume 6372
of LNCS, pages 59-74. Springer, 2010.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

P. Baldan, A. Corradini, and B. Kénig. A framework for the verification of infinite-
state graph transformation systems. Inf. Comput., 206(7):869-907, 2008.

L. Baresi and P. Spoletini. Procs. of ICGT 2006, chapter On the Use of Alloy to
Analyze Graph Transformation Systems, pages 306-320. Springer, 2006.

J. H. Brenas, R. Echahed, and M. Strecker. A Hoare-like calculus using the
SROIQ° logic on transformations of graphs. In J. Diaz, I. Lanese, and D. San-
giorgi, editors, Theoretical Computer Science, volume 8705 of Lecture Notes in
Computer Science, pages 164—-178. Springer Berlin Heidelberg, 2014.

. J. H. Brenas, R. Echahed, and M. Strecker. Proving correctness of logically deco-

rated graph rewriting systems. In Ist International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2016, pages 14:1-14:15, 2016.

J. H. Brenas, R. Echahed, and M. Strecker. On the verification of logically deco-
rated graph transformations. CoRR, abs/1803.02776, 2018.

A. Corradini, D. Duval, R. Echahed, F. Prost, and L. Ribeiro. AGREE - algebraic
graph rewriting with controlled embedding. In F. Parisi-Presicce and B. Westfech-
tel, editors, Graph Transformation - 8th International Conference, ICGT 2015,
volume 9151 of Lecture Notes in Computer Science, pages 35-51. Springer, 2015.
A. Corradini, T. Heindel, F. Hermann, and B. Koénig. Sesqui-pushout rewriting.
In ICGT 2006, volume 4178 of LNCS, pages 30-45. Springer, 2006.

B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput., 85(1):12-75, 1990.

R. Echahed. Inductively sequential term-graph rewrite systems. In jth Interna-
tional Conference on Graph Transformations, ICGT, volume 5214 of Lecture Notes
in Computer Science, pages 84-98. Springer, 2008.

A. H. Ghamarian, M. de Mol, A. Rensink, E. Zambon, and M. Zimakova. Modelling
and analysis using GROOVE. STTT, 14(1):15-40, 2012.

A. Habel and K. Pennemann. Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science,
19(2):245-296, 2009.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576-580, 1969.

D. Jackson. Software Abstractions. MIT Press, Feb. 2012.

B. Koénig and J. Esparza. Verification of graph transformation systems with
context-free specifications. In ICGT 2010, volume 6372 of Lecture Notes in Com-
puter Science, pages 107-122. Springer, 2010.

D. Plump. The graph programming language GP. In Procs of Third International
Conference on Algebraic Informatics, CAI 2009, volume 5725 of Lecture Notes in
Computer Science, pages 99-122. Springer, 2009.

C. M. Poskitt and D. Plump. A Hoare calculus for graph programs. In Procs. of
ICGT 2010, pages 139-154, 2010.

C. M. Poskitt and D. Plump. Verifying monadic second-order properties of graph
programs. In Procs. of ICGT 2014, pages 33-48, 2014.

A. Rensink and D. Distefano. Abstract graph transformation. FElectronic Notes
in Theoretical Computer Science, 157(1):39 — 59, 2006. Proceedings of the Third
International Workshop on Software Verification and Validation (SVV 2005).

A. Rensink, A. Schmidt, and D. Varré. Model checking graph transformations:
A comparison of two approaches. In ICGT 2004, Rome, volume 3256 of Lecture
Notes in Computer Science, pages 226—241. Springer, 2004.

R. Virga. Efficient substitution in Hoare logic expressions. Flectr. Notes Theor.
Comput. Sci., 41(3):35-49, 2000.



26. E. Visser. Stratego: A language for program transformation based on rewriting
strategies. In Procs of the 12th International Conference on Rewriting Techniques
and Applications, RTA 2001, volume 2051 of Lecture Notes in Computer Science,
pages 357-362. Springer, 2001.



	Verifying Graph Transformation Systems with Description Logics

