
Verification of the Schorr-Waite algorithm –
From trees to graphs

Mathieu Giorgino, Martin Strecker, Ralph Matthes, and Marc Pantel

IRIT (Institut de Recherche en Informatique de Toulouse)
Université de Toulouse

Abstract. This article proposes a method for proving the correctness
of graph algorithms by manipulating their spanning trees enriched with
additional references. We illustrate this concept with a proof of the cor-
rectness of a (pseudo-)imperative version of the Schorr-Waite algorithm
by refinement of a functional one working on trees. It is composed of
two orthogonal steps of refinement – functional to imperative and tree
to graph – finally merged to obtain the result. Our imperative specifi-
cations use monadic constructs and syntax sugar, making them close to
common imperative languages. This work has been realized within the
Isabelle/HOL proof assistant.

Key words: Verification of imperative programs, Pointer algorithms,
Program refinement

1 Introduction

The Schorr-Waite algorithm [16] is an in-place graph marking algorithm that
traverses a graph without building up a stack of nodes visited during traver-
sal. Instead, it codes the backtracking structure within the graph itself while
descending into the graph, and restores the original shape on the way back to
the root. Originally conceived to be a particularly space-efficient algorithm to be
used in garbage collectors, it has meanwhile become a benchmark for studying
pointer algorithms.

A correctness argument for the Schorr-Waite (SW) algorithm is non-trivial,
and a large number of correctness proofs, both on paper and machine-assisted,
has accumulated over the years. All these approaches have in common that they
start from a low-level graph representation, as elements of a heap which are
related by pointers (see Section 7 for a discussion).

In this paper, we advocate a development that starts from high-level struc-
tures (Section 2), in particular inductively defined trees, and exploits as far as
possible the corresponding principles of computation (mostly structural recur-
sion) and reasoning (mostly structural induction). We then proceed by refine-
ment, along two dimensions: on the one hand, by mapping the inductively defined
structures to a low-level heap representation (Sections 3 and 4), on the other
hand, by adding pointers to the trees, to obtain genuine graphs (Sections 5).
These two developments are joined in Section 6.

We argue that this method has several advantages over methods that ma-
nipulate lower-level structures:

– Termination of the algorithms becomes easier to prove, as the size of the
underlying trees and similar measures can be used in the termination argu-
ment.

– Transformation and also preservation of structure is easier to express and to
prove than when working on a raw mesh of pointers. In particular, we can
state succinctly that the SW algorithm restores the original structure after
having traversed and marked it.

– Using structural reasoning such as induction allows a higher degree of proof
automation: the prover can apply rewriting which is more deterministic than
the kind of predicate-logic reasoning that arises in a relational representation
of pointer structures.

Technically, the main ingredients of our development are, on the higher level,
spanning trees with additional pointers parting from the leaf nodes to represent
graphs with an out-degree of 2 (by a standard encoding of lists by binary trees
we can in fact encode arbitrary finite graphs). During the execution of the algo-
rithm, the state space is partitioned into disjoint areas that may only be linked
by pointers which satisfy specific invariants. On the lower level, we use state-
transformer and state-reader monads for representing imperative programs. The
two levels are related by a refinement relation that is preserved during execution
of the algorithms. In this article, the refinement is carried out manually, but in
the long run, we hope to largely automate this step.

Even though, taken separately, most of these ingredients are not new (see
Section 7 for a discussion of related work), this paper highlights the fact that
relatively complex graph algorithms can be dealt with elegantly when perceiving
them as refinements of tree algorithms.

The entire development has been carried out in the Isabelle theorem prover
[12], which offers a high degree of automation – most proofs are just a few lines
long. The formalization itself does not exploit any specificities of Isabelle, but
we use Isabelle’s syntax definition facilities for devising a readable notation for
imperative programs. A longer version of this paper with details of the proofs is
available at [7].

2 Schorr-Waite on Pure Trees

A few words on notation before starting the development itself: Isabelle/HOL’s
syntax is a combination of mathematical notation and the ML language. Type
variables are written ′a, ′b, . . . , total functions from α to β are denoted by α
⇒ β and type constructors are post-fix by default (like ′a list). −→/=⇒ are
both implication on term-level/meta-level where the meta-level is the domain of
proofs. [[a0;...;an]] =⇒ b abbreviates a0 =⇒ (. . . =⇒ (an =⇒ a). . .). Construc-
tion and concatenation operators on lists are represented by x # xs and xs @
ys. Sometimes we will judiciously choose the right level of nesting for pattern

matching in definitions, in order to take advantage of case splitting to improve
automation in proofs.

The high-level version of the algorithm operates on inductively defined trees,
whose definition is standard:

datatype (′a, ′l) tree = Leaf ′l | Node ′a ((′a, ′l) tree) ((′a, ′l) tree)

The SW algorithm requires a tag in each node, consisting of its mark, here
represented by a boolean value (True for marked, False for unmarked) and a
“direction” (left or right), telling the algorithm how to backtrack. We store this
information as follows:

datatype dir = L | R datatype ′a tag = Tag bool dir ′a

With these preliminaries, we can describe the SW algorithm. It uses two
“pointers” t and p (which, for the time being, are trees): t points to the root of
the tree to be traversed, and p to the previously visited node. There are three
main operations:

– As long as the t node is unmarked, push moves t down the left subtree, turns
its left pointer upwards and makes p point to the former t node. The latter
node is then marked and its direction component set to “left”.

– Eventually, the left subtree will have been marked, i. e. t’s mark is True, or t
is a Leaf. If p’s direction component says “left”, the swing operation makes
t point to p’s right subtree, the roles of p’s left and right subtree pointers
are reversed, and the direction component is set to “right”.

– Finally, if, after the recursive descent, the right subtree is marked and p’s di-
rection component says “right”, the pop operation will make the two pointers
move up one level, reestablishing the original shape of t.

The algorithm is supposed to start with an empty p (a leaf), and it stops if p
is empty again and t is marked. The three operations are illustrated in Figure 1
in which black circles represent marked nodes, white circles unmarked nodes,
the directions are indicated by the arrows. Dots indicate intermediate steps and
leaves are not represented.

p

t

Push

t

p

t

p

p

tp

t

PopSwing

p

t

......

Fig. 1. Operations of the Schorr-Waite algorithm.

Our algorithm uses two auxiliary functions sw-term (termination condition)
and sw-body, the body of the algorithm with three main branches as in the
informal characterisation above. The function sw-body should not be called if t
is marked and p is a Leaf, so it returns an insignificant result in this case.

fun sw-term :: ((′a tag , ′l) tree ∗ (′a tag , ′l) tree) ⇒ bool where
sw-term (p, t) = (case p of

Leaf - ⇒ (case t of Leaf - ⇒ True | (Node (Tag m d v) tlf tr) ⇒ m)
| - ⇒ False)

fun sw-body :: ((′a tag , ′l) tree ∗ (′a tag , ′l) tree)
⇒ ((′a tag , ′l) tree ∗ (′a tag , ′l) tree) where

sw-body (p, t) = (case t of
(Node (Tag False d v) tlf tr) ⇒ ((Node (Tag True L v) p tr), tlf)
| - ⇒ (case p of

Leaf - ⇒ (p, t)
| (Node (Tag m L v) pl pr) ⇒ ((Node (Tag m R v) t pl), pr)
| (Node (Tag m R v) pl pr) ⇒ (pr , (Node (Tag m R v) pl t))))

The SW algorithm on trees, sw-tr, is now easy to define, using the p and
t pointers like a zipper data-structure [9]. We note in passing that sw-tr is
tail recursive. If coding it in a functional programming language, your favorite
compiler will most likely convert it to a while loop that traverses the tree without
building up a stack.

function sw-tr :: ((′a tag , ′l) tree ∗ (′a tag , ′l) tree)
⇒ ((′a tag , ′l) tree ∗ (′a tag , ′l) tree) where

sw-tr args = (if (sw-term args) then args else sw-tr (sw-body args))

We still have to prove the termination of the algorithm. We note that ei-
ther the number of unmarked nodes decreases (during push), or it remains un-
changed and the number of nodes with “left” direction decreases (during swing),
or these two numbers remain unchanged and the p tree becomes smaller (during
pop). This double lexicographic order is expressed in Isabelle as follows (with
the predefined function size, and unmarked-count and left-count with obvious
definitions):

termination sw-tr apply (relation measures [
λ (p,t). unmarked-count p + unmarked-count t ,
λ (p,t). left-count p + left-count t ,
λ (p,t). size p])

Please note that the algorithm works on type (′a tag , ′l) tree with an ar-
bitrary type for the data in the leaf nodes, which will later be instantiated by
types for references.

Let’s take a look at some invariants of the algorithm. The first thing to
note is that the t tree should be consistently marked: Either, it is completely
unmarked, or it is completely marked. This is a requirement for the initial tree:
a marked root with unmarked nodes hidden below would cause the algorithm
to return prematurely, without having explored the whole tree. We sharpen this
requirement, by postulating that in a t tree, the direction is “right” iff the node
is marked. This is not a strict necessity, but facilitates stating our correctness
theorem. We thus arrive at the following two properties t-marked True and
t-marked False for t trees that are defined in one go:

primrec t-marked :: bool ⇒ (′a tag , ′l) tree ⇒ bool where

t-marked m (Leaf rf) = True
| t-marked m (Node n l r) = (case n of (Tag m ′ d v) ⇒

(((d = R) = m) ∧ m ′ = m ∧ t-marked m l ∧ t-marked m r))

We can similarly state a property of a p tree. We note that such a tree is
composed of an upwards branch that is again a p-shaped tree, and a downwards
branch that, depending on the direction, is either a previously marked t tree or
an as yet unexplored (and therefore completely unmarked) t tree:

primrec p-marked :: (′a tag , ′l) tree ⇒ bool where
p-marked (Leaf rf) = True
| p-marked (Node n l r) = (case n of (Tag m d v) ⇒ (case d of

L ⇒ (m ∧ p-marked l ∧ t-marked False r)
| R ⇒ (m ∧ t-marked True l ∧ p-marked r)))

We note in passing that these two properties are invariants of sw-body.
What should the correctness criterion for sw-tr be? We would like to state

that sw-tr behaves like a traditional recursive tree traversal (implicitly using a
stack!) that sets the mark to True. Unfortunately, SW not only modifies the
mark, but also the direction, so the two components have to be taken into ac-
count:

fun mark-all :: bool ⇒ dir ⇒ (′a tag , ′l) tree ⇒ (′a tag , ′l) tree where
mark-all m d (Leaf rf) = Leaf rf
| mark-all m d (Node (Tag m ′ d ′ v) l r) =

(Node (Tag m d v) (mark-all m d l) (mark-all m d r))

By using the function mark-all we also capture the fact that the shape of the
tree is unaltered after traversal. Of course, if a tree is consistently marked, it is
not modified by marking with True and direction “right”:

lemma t-marked-R-mark-all : t-marked True t −→ mark-all True R t = t

A key element of the correctness proof is that at each moment of the SW
algorithm, given the p and t trees, we can reconstruct the shape of the original
tree (if not its marks) by climbing up the p tree and putting back in place its
subtrees:

fun reconstruct :: ((′a tag , ′l) tree ∗ (′a tag , ′l) tree) ⇒ (′a tag , ′l) tree where
reconstruct (Leaf rf , t) = t
| reconstruct ((Node n l r), t) = (case n of (Tag m d v) ⇒ (case d of

L ⇒ reconstruct (l , (Node (Tag m d v) t r))
| R ⇒ reconstruct (r , (Node (Tag m d v) l t))))

For this reason, if two trees t and t′ have the same shape (i. e. are the same
after marking), they are also of the same shape after reconstruction with the
same p.

Application of sw-body does not change the shape of the original tree that p
and t are reconstructed to:

lemma sw-body-mark-all-reconstruct :
[[p-marked p; t-marked m ′ t ; ¬ sw-term (p, t)]] =⇒
mark-all m d (reconstruct (sw-body (p, t))) = mark-all m d (reconstruct (p, t))

Obviously, if t is t-marked and we are in the final state of the recursion
(sw-term is satisfied), then t is marked as true and p is empty. Together with
the invariant of sw-body just identified, an induction on the form of the recursion
of sw-tr gives us:

lemma sw-tr-mark-all-reconstruct :
let (p, t) = args in (∀ m. t-marked m t −→ p-marked p −→

(let (p ′, t ′) = (sw-tr args) in
mark-all True R (reconstruct (p, t)) = t ′ ∧ (∃ rf . p ′ = Leaf rf)))

For a run of sw-tr starting with an empty p, we obtain the desired theorem
(which, of course, is only interesting for the non-trivial case m=False):

theorem sw-tr-correct : t-marked m t =⇒ sw-tr (Leaf rf , t) = (p ′, t ′)
=⇒ t ′ = mark-all True R t ∧ (∃ rf . p ′ = Leaf rf)

To show the brevity of the development, the full version of the paper [7]
reproduces the entire Isabelle script up to this point, which is barely 5 pages
long.

3 Imperative Language and its Memory Model

This section presents a way to manipulate low-level programs. We use a heap-
transformer monad providing means to reason about monadic/imperative code
along with a nice syntax, and that should allow similar executable code to be
generated.

The theory Imperative HOL [4] discussed in Section 7 already implements
such a monad, however our development started independently of it and we have
then used it to improve our version, without code generation for the moment.

The State Transformer Monad

In this section we define the state-reader and state-transformer monads and
a syntax seamlessly mixing them. We encapsulate them in the SR – respectively
ST – datatypes, as functions from a state to a return value – respectively a pair
of return value and state.

We can escape from these datatypes with the runSR – respectively runST
and evalST – functions which are intended to be used only in logical parts
(theorems and proofs) and that should not be extractible.

datatype (′a, ′s) SR = SR ′s ⇒ ′a datatype (′a, ′s) ST = ST ′s ⇒ ′a × ′s
primrec runSR :: (′a, ′s) SR ⇒ ′s ⇒ ′a where runSR (SR m) = m
primrec runST :: (′a, ′s) ST ⇒ ′s ⇒ ′a × ′s where runST (ST m) = m
abbreviation evalST where evalST fm s == fst (runST fm s)

The return (also called unit) and bind functions for manipulating the mon-
ads are then defined classically with the infix notations DSR and DST for binds.
We add also the function SRtoST translating state-reader monads to state-
transformer monads and the function thenST (with infix notation BST) abbre-
viating binding without value transfer.

consts
returnSR :: ′a ⇒ (′a, ′s) SR
returnST :: ′a ⇒ (′a, ′s) ST
bindSR :: (′a, ′s) SR ⇒ (′a ⇒ (′b, ′s) SR) ⇒ (′b, ′s) SR (infixr DSR)
bindST :: (′a, ′s) ST ⇒ (′a ⇒ (′b, ′s) ST) ⇒ (′b, ′s) ST (infixr DST)
SRtoST :: (′a, ′s) SR ⇒ (′a, ′s) ST

We define also syntax translations to use the Haskell-like do-notation. The
principal difference between the Haskell do-notation and this one is the use of
state-readers for which order does not matter. With some syntax transforma-
tions, we can simply compose several state readers into one as well as give them
as arguments to state writers, almost as it is done in imperative languages (for
which state is the heap). In an adapted context – i. e. in doSR{. . . } or doST{. . . }
– we can so use state readers in place of expressions by simply putting them in
〈. . . 〉, the current state being automatically provided to them, only thanks to
the syntax transformation which propagates the same state to all 〈. . . 〉. We
also add syntax for let (letST x = aSR; bST) and if (if (aSR) {bST} else {cST}).
For example with f

′a ⇒ (′b, ′s) ST, a(′a, ′s) SR, g((), ′s) ST and h
′b ⇒ ′d, all these

expressions are equivalent:

– doST { x ← f 〈a〉; g ; returnST (h x)}
– doST { va ← SRtoST a; x ← f va; g ; returnST (h x)}
– ST

(
λs. runST (f (runSR a s)) s

)
D (λx . g B returnST (h x))

We finally define the whileST combinator ([v = v0] while (c) {a}), inspired
from the while combinator definition of the Isabelle/HOL library, the only dif-
ference with it being the encapsulation in monads:
whileST b c v = (doST{if (〈b v〉){v ′← c v ; whileST b c v ′}else{returnST v}})
while b c v = (if b v then while b c (c v) else v)

The Heap Transformer Monad

We define a heap we will use as the state in the state-reader/transformer
monads. We represent it by an extensible record containing a field for the values.

As the Schorr-Waite algorithm doesn’t need allocation of new references, our
heap simply is a total function from references to values. (We use a record here
because of developments already under way and needing further components.)

record (′n, ′v) heap = heap :: ′n ⇒ ′v

We assume that we have a data type of references, which can either be Null
or point to a defined location:

datatype ′n ref = Ref ′n | Null

To read and write the heap, we define the corresponding primitives read and
write. To access directly to the fields of structures in the heap, we also add
the get (a·b), rget (r → b) and rupdate (r → b := v) operators, taking an
access-and-update function (b) as argument.

4 Implementation for Pure Trees

In this section, we provide a low-level representation of trees as structures con-
nected by pointers that are manipulated by an imperative program. This is the
typical representation in programming languages like C, and it is also used in
most correctness proofs of SW.

Data Structures

These structures are either empty (corresponding to a leaf with a null
pointer, as we will see later) or nodes with references to the left and right subtree:

datatype (′a, ′r) struct = EmptyS | Struct ′a (′r ref) (′r ref)

We define then access-and-update functions $v (value) $l (left) and $r (right)
for the (′a, ′r) struct datatype, and access-and-update functions $mark, $dir and
$val for the ′a tag datatype.

Traditionally, in language semantics, the memory is divided into a heap and
a stack, where the latter contains the variables. In our particular case, we choose
a greatly simplified representation, because we just have to accommodate the
variables pointing to the trees p and t. Our heap will be a type abbreviation for
heaps whose values are structures:

types (′r , ′a) str-heap = (′r , (′a, ′r) struct) heap

An Imperative Algorithm

We now have an idea of the low-level memory representation of trees and
can start devising an imperative program that manipulates them (as we will see,
with a similar outcome as the high-level program of Section 2). The program
is a while loop, written in monadic style, that has as one main ingredient a
termination condition:

constdefs
sw-impl-term :: (′r ref × ′r ref) ⇒ (bool , (′r , ′v tag) str-heap) SR
sw-impl-term vs == doSR { (case vs of (ref-p, ref-t) ⇒
(case ref-p of

Null ⇒ (case ref-t of Null ⇒ True | t ⇒ ((〈 read t 〉·$v)·$mark))
| - ⇒ False))}

The second main ingredient of the while loop is its body:

constdefs
sw-impl-body :: (′r ref × ′r ref) ⇒ (′r ref × ′r ref , (′r , ′v tag) str-heap) ST
sw-impl-body vs == (case vs of (p, t) ⇒ doST {

if (case t of Null ⇒ True | - ⇒ (〈read t〉·$v)·$mark) {
(if (〈 p → ($v oo $dir) 〉 = L) { (∗∗ swing ∗∗)

letST rt = 〈p → $r〉;
p → $r := 〈p → $l〉;
p → $l := t ;
p → ($v oo $dir) := R;

returnST (p, rt)
} else { (∗∗ pop ∗∗)

letST rp = 〈p → $r〉;
p → $r := t ;
returnST (rp, p) })

} else { (∗∗ push ∗∗)
letST rt = 〈t → $l〉;
t → $l := p;
t → ($v oo $mark) := True;
t → ($v oo $dir) := L;
returnST (t , rt) } })

The termination condition and loop body are combined in the following im-
perative program:

constdefs sw-impl-tr :: (′r ref × ′r ref) ⇒ (′r ref × ′r ref , (′r , ′v tag) str-heap) ST
where
sw-impl-tr pt == (doST{[vs = pt] while (¬〈sw-impl-term vs〉) {sw-impl-body vs}})

Correctness

Before we can describe the implementation of inductively defined trees in
low-level memory, let us note that we need to have a means of expressing which
node of a tree is mapped to which memory location. For this, we need trees
adorned with address information:

datatype (′r , ′v) addr = Addr ′r ′v

For later use, we also introduce some projections (cf. definition of tag in
Section 2) :

primrec addr-of-tag :: (′r , ′v) addr tag ⇒ ′r
where addr-of-tag (Tag m d av) = (case av of (Addr ref v) ⇒ ref)
primrec val-of-tag :: (′r , ′v) addr tag ⇒ ′v
where val-of-tag (Tag m d av) = (case av of (Addr ref v) ⇒ v)

We can now turn to characterizing the implementation relation of trees in
memory, which we define gradually, starting with a relation which expresses that
a (non-empty) node n with subtrees l and r is represented in state s. Remember
that node n contains its address in memory. It is not possible that the structure
at this address is empty. We therefore find a structure with a field corresponding
to the value of n (just remove the address, which is not represented in the
structure) and left and right pointers to the l and r subtrees:

primrec val-proj-of-tag :: (′r , ′v) addr tag ⇒ ′v tag where
val-proj-of-tag (Tag m d av) = (case av of (Addr ref v) ⇒ (Tag m d v))

constdefs struct-alloc-in-state ::
(′t ⇒ ′r ref) ⇒ (′r , ′v) addr tag ⇒ ′t ⇒ ′t ⇒ (′r , ′v tag) str-heap ⇒ bool
struct-alloc-in-state ac n l r s == (case (heap s (addr-of-tag n)) of

EmptyS ⇒ False
| Struct ns ref-l ref-r ⇒ ns = val-proj-of-tag n ∧ ref-l = ac l ∧ ref-r = ac r)

Please ignore the projection parameter ac for the moment. We will instantiate
it with different functions, depending on whether we are working on trees (this
section) or on graphs (in Section 6).

Given the representation of a node in memory, we can define the representa-
tion of a tree t in a state s: Just traverse the tree recursively and check that each
node is correctly represented (tree-alloc-in-state ac t s). Finally, a configuration
(the p and t trees) is correctly represented (config-alloc-in-state (p, t)) if each of
the trees is, and the p variable contains a reference to the p tree, and similarly
for t.

Let us now present the first intended instantiation of the ac parameter ap-
pearing in the above definitions: It is a function that returns the address of a
non-empty node, and always Null for a leaf:

primrec addr-of :: ((′r , ′v) addr tag , ′b) tree ⇒ ′r ref where
addr-of (Leaf rf) = Null
| addr-of (Node n l r) = Ref (addr-of-tag n)

We can now state our first result: for a couple of p and t trees correctly
allocated in a state s, the low-level and high-level algorithms have the same
termination behaviour:

lemma sw-impl-term-sw-term:
config-alloc-in-state addr-of pt (ref-pt , s)

=⇒ runSR (sw-impl-term ref-pt) s = sw-term pt

Before discussing the correctness proof, let us remark that the references
occurring in the trees have to be unique. Otherwise, the representation of a
tree in memory might not be a tree any more, but might contain loops or joint
subtrees. Given the list reach of references occurring in a tree, we will in the
following require the p and t trees to have disjoint (“distinct”) reference lists.

The correctness argument of the imperative algorithm is now given in the
form of a simulation theorem: A computation with sw-tr carried out on trees p
and t and producing trees p ′ and t ′ can be simulated by a computation with
sw-impl-tr starting in a state implementing p and t, and ending in a state imple-
menting p ′ and t ′. We will not go into details here (please refer to the long version
of the paper [7]), since the correctness argument for trees is just a light-weight
version of the argument for graphs in Section 5.

5 Schorr-Waite on Trees with Pointers

The Schorr-Waite algorithm has originally been conceived for genuine graphs,
and not for trees. We will now add “pointers” to our trees to obtain a repre-
sentation of a graph as a spanning tree with additional pointers. This is readily
done, by instantiating the type variables of the leaves to the type of references.
Thus, a leaf can now represent a null pointer (Leaf Null), or a reference to r, of
the form Leaf (Ref r).

For example, the graph of Figure 4 could be represented by the following
tree, with references of type nat :

Node (Tag False L (Addr 1 ()))
(Node (Tag False L (Addr 2 ())) (Leaf Null) (Leaf Null))
(Node (Tag False L (Addr 3 ())) (Leaf (Ref 2)) (Leaf Null))

A given graph might be represented by different spanning trees with addi-
tional pointers, but the choice is not indifferent: it is important that the graph
is represented by a spanning tree that has an appropriate form, so that the
low-level algorithm of Section 4 starts backtracking at the right moment. To
characterize this form and to get an intuition for the simulation proof presented
in Section 6, let’s take a look at a “good” (Figure 2) and a “bad” spanning tree
(Figure 3).

p

t

2

1

54

3

p

tt

p

t

p2

1

54

32

1

54

3

Swing

Swing

Fig. 2. Low-level graph with a “good” spanning tree

In Figure 2, the decisive step occurs when p points to node 3. Since the high-
level algorithm proceeds structurally, it does not follow the additional pointer.
Its t tree will therefore be a leaf, and the algorithm will start backtracking at
this moment. The low-level representation does not distinguish between pointers
to subtrees and additional pointers in leaf nodes, so that the t pointer will follow
the link to node 4, just to discover that this node is already marked. For this
reason, also the low-level algorithm will start backtracking.

t

p

p

2

1

54

3

p

t

t

Pop

Push

t

p

2

1

54

3 2

1

54

3

Fig. 3. The same graph with a bad spanning tree

The situation is different in Figure 3, when p reaches node 2. The high-level
algorithm finishes its recursive descent at this point and starts backtracking,
leaving node 4 unmarked. However, the low-level version proceeds to node 4
with its t pointer, marks it and starts exploring its subtrees. At this point, the
high-level and low-level versions of the algorithm start diverging irrecoverably.

What then, more generally, is a “good” spanning tree? It is one where all
additional pointers reference nodes that have already been visited before, in a
pre-order traversal of the tree. This way, we can be sure that by following such an
additional pointer, the low-level algorithm discovers a marked node and returns.
We formalize this property by a predicate that traverses a tree recursively and
checks that additional pointers only point to a set of allowed external references
extrefs. When descending into the left subtree, we add the root to this set, and
when descending into the right subtree, the root and the nodes of the left subtree.

primrec t-marked-ext :: ((′r , ′v) addr tag , ′r ref) tree ⇒ ′r set ⇒ bool where
t-marked-ext (Leaf rf) extrefs = (case rf of Null ⇒ True | Ref r ⇒ r ∈ extrefs)
| t-marked-ext (Node n l r) extrefs = (t-marked-ext l (insert (addr-of-tag n) extrefs)

∧ t-marked-ext r ((insert (addr-of-tag n) extrefs) ∪ set (reach l)))

There is a similar property p-marked-ext, less inspiring, for p trees, which we
do not give here. It uses in particular the function reach-visited giving the list
of addresses of nodes that should have been visited.

1

2 3

Fig. 4. A tree with additional pointers
(drawn as dashed lines)

t

p

Fig. 5. Partitioning of trees

Let us insist on one point, because it is essential for the method advocated in
this paper: Intuitively, we partition the state space into disjoint areas of addresses
with their spanning trees, as depicted in Figure 5. The properties of these areas
are described by the predicates t-marked-ext and p-marked-ext. Pointers may
reach from one area into another area (the extrefs of the predicates). For the
proof, it will be necessary to identify characteristic properties of these external
references.

One of these is that all external references of a t tree only point to nodes
marked as true. To prepare the ground, the following function gives us all the
references of nodes that have a given mark, using the projection nmark for
retrieving the mark from a tag:

primrec marked-as-in :: bool ⇒ ((′r , ′v) addr tag , ′l) tree ⇒ ′r set where
marked-as-in m (Leaf rf) = {}

| marked-as-in m (Node n l r) = (if (nmark n) = m then {addr-of-tag n} else {})
∪ marked-as-in m l ∪ marked-as-in m r

We can now show some invariants of function sw-body that will be instrumen-
tal for the correctness proof of Section 6. For example, if all external references of
t only point to marked nodes of p, then this will also be the case after execution
of sw-body :

lemma marked-ext-pres-t-marked-ext :
[[(p ′, t ′) = sw-body (p, t); ¬ sw-term (p, t); distinct (reach p @ reach t);
p-marked-ext p (set (reach t)); t-marked-ext t (set (reach-visited p));
t-marked m t ; p-marked p; (set (reach-visited p)) ⊆ marked-as-in True p]]

=⇒ t-marked-ext t ′ (set (reach-visited p ′))

To conclude this section, let us remark that the refinement of trees by in-
stantiation of the leaf node type described here allows us to state some more
invariants, but of course, the correctness properties of the original algorithm of
Section 2 remain valid.

6 Implementation for Trees with Pointers

More surprisingly, we will now see that the low-level traversal algorithm of Sec-
tion 4 also works for all graphs - without the slightest modification of the al-
gorithm! The main justification has already been given in the previous section:
There is essentially only one situation when the “pure tree” version and the “tree
with pointers” version of the algorithm differ:

– In the high-level “pure tree” version, after a sequence of push operations, the
t tree will become a leaf. This will be the case exactly when in the low-level
version of the algorithm, the corresponding t pointer will become Null.

– In the high-level “tree with pointers” version, after some while, the t tree
will also become a leaf, but in the low-level version, the t pointer might have
moved on to a non-Null node. If the underlying spanning tree is well-formed
(in the sense of t-marked-ext), the t will point to a marked node, so that the
algorithm initiates backtracking in both cases.

We achieve this by taking into account the information contained in leaf
nodes. Instead of the function addr-of of Section 4, we now parametrize our
development with the function addr-or-ptr that also returns the references con-
tained in leaf nodes:

primrec addr-or-ptr ::((′r , ′v) addr tag , ′r ref) tree ⇒ ′r ref where
addr-or-ptr (Leaf rf) = rf
| addr-or-ptr (Node n l r) = Ref (addr-of-tag n)

We can now prove an extension of the lemma sw-impl-term-sw-term of Sec-
tion 4 establishing the correspondence of the high-level and low-level termination
conditions described above.

The proof for the simulation lemma now proceeds essentially along the same
lines as before.

lemma sw-impl-body-config-alloc-ext :
[[config-alloc-in-state addr-or-ptr (p, t) (vs, s); t-marked m t ; p-marked p;
¬ (runSR (sw-impl-term vs) s); distinct (reach p @ reach t);
p-marked-ext p (set (reach t)); t-marked-ext t (set (reach-visited p));
(set (reach-visited p)) ⊆ marked-as-in True p]]
=⇒ config-alloc-in-state addr-or-ptr (sw-body (p, t)) (runST (sw-impl-body vs) s)

Now, the proof proceeds along the lines of the proof discussed in Section 4,
yielding finally a preservation theorem for configurations:

lemma impl-correct-ext :
(∃ m. t-marked m t) ∧ p-marked p ∧ distinct (reach p @ reach t)
∧ p-marked-ext p (set (reach t)) ∧ t-marked-ext t (set (reach-visited p))
∧ (set (reach-visited p)) ⊆ marked-as-in True p
∧ config-alloc-in-state addr-or-ptr (p, t) (vs, s)
=⇒ config-alloc-in-state addr-or-ptr (sw-tr (p, t)) (runST (sw-impl-tr vs) s)

If we start our computation with an empty p tree, some of the preconditions
of this lemma vanish, as seen by a simple expansion of definitions. A tidier
version of our result is then:

theorem impl-correct-tidied :
[[t-marked m t ; t-marked-ext t {}; distinct (reach t);
tree-alloc-in-state addr-or-ptr t s; sw-tr (Leaf Null , t) = (p ′, t ′);
(runST (sw-impl-tr (Null , addr-or-ptr t)) s) = ((p-ptr ′, t-ptr ′), s ′)]]

=⇒ tree-alloc-in-state addr-or-ptr t ′ s ′ ∧ t-ptr ′ = (addr-or-ptr t ′)

7 Related Work

A considerable amount of work has accumulated on the Schorr-Waite algorithm
in particular and on the verification of pointer algorithms in general. For reasons
of space, we have to defer a detailed discussion to the full version [7], which also
contains some references we cannot accommodate here.

Schorr-Waite: Since its publication [16], the algorithm has given rise to nu-
merous publications which, in the early days, were usually paper proofs which
often followed a transformational approach to derive an executable program.
There are recently some fully automated methods that, however, are incom-
plete or cover only very specific correctness properties. Of more interest to us
are proofs using interactive theorem provers, sparked by Bornat’s proof using
his Jape prover [2]. This work has later been shortened considerably in Isabelle
[11], using a “split heap” representation. Similar in spirit are proofs using the
Caduceus platform [8] and the KeY system [3]. A proof with the B method [1]
follows the refinement tradition of program development.

Verification of imperative programs with proof assistants: There are two ways
to obtain verified executable code: verify written code by abstracting it or gen-
erate it from abstract specification.

Haskabelle [14] allows to import Haskell code into Isabelle, which can then
be used as specification, implementation or intermediate refinement like in [10].
Why/Krakatoa [5] is a general framework to generate proof obligations from
annotated imperative programs like Java or C into proof assistants like Coq,
PVS or Isabelle.

As to the second way, the Isabelle extractor generates SML, Caml, Haskell
code from executable specifications. The theory Imperative HOL [4] takes ad-
vantage of this and already implements a state-transformer monad with syntax
transformations, and code extraction/generation.

We used a simple memory model as a total function from natural numbers to
values which was sufficient in our case, but managing allocation could become
hard. [15] compares several memory models and then presents a synthesis en-
joying their respective advantages, which could be interesting for our work. Our
state space partitioning bears similarities with methods advocated in Separation
logic [13] – details of this connection still have to be explored.

8 Conclusions

We have presented a correctness proof of the Schorr-Waite algorithm, starting
from a high-level algorithm operating on inductively defined trees, to which
we add pointers to obtain genuine graphs. The low-level algorithm, written in
monadic style, has been proved correct using a refinement relation with the aid
of a simulation argument.

The Isabelle proof script is about 1000 lines long and thus compares favor-
ably with previous mechanized proofs of Schorr-Waite, in particular in view of
the fact that the termination of the algorithm and structure preservation of the
graph after marking have been addressed. It is written in a plain style without
particular acrobatics. It favours readability over compactness and can presum-
ably be adapted to similar proof assistants without great effort.

The aim of the present paper is to advocate a development style starting
from high level, inductively defined structures and proceeding by refinement.
There might be other approaches of verifying low-level heap manipulating algo-
rithms (iterating, for example, over the number of objects stored in the heap and
thus not exploiting structural properties). However, we hope to develop patterns
that make refinement proofs easier and to partly automate them, thus further
decreasing the proof effort.

We think that some essential concepts of our approach (representation of
a graph by spanning trees with additional pointers, refinement to imperative
programs in monadic style, partitioning of the heap space into subgraphs) can be
adapted to other traditional graph algorithms: Often, the underlying structure of
interest is indeed tree-shaped, whereas pointers are just used for optimization.
In this spirit, we have verified a BDD construction algorithm [6] and we are
planning to apply similar techniques in the context of Model Driven Engineering.
Of course, we do not claim that our approach is universally applicable for graphs
without deeper structure.

The present paper is primarily a case study, so there are still some rough
edges: the representation of our imperative programs has to be refined, with the
aim of allowing their compilation to standard programming languages like C or
Java.

References

1. Jean-Raymond Abrial. Event based sequential program development: Application
to constructing a pointer program. In Formal Methods Europe (FME), LNCS 2805,
pages 51–74, 2003.

2. Richard Bornat. Proving pointer programs in Hoare logic. In Mathematics of
Program Construction (MPC), LNCS 1837, pages 102–126, 2000.

3. Richard Bubel. The Schorr-Waite-Algorithm. In Verification of Object-Oriented
Software: The KeY Approach, LNCS 4334, chapter 15, pages 569–587. Springer
Verlag, 2007.

4. Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkök, and John
Matthews. Imperative Functional Programming with Isabelle/HOL. In Theorem
Proving in Higher Order Logics (TPHOL), LNCS 5170, 2008.

5. Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus plat-
form for deductive program verification. In Computer Aided Verification (CAV),
LNCS 4590, pages 173–177. Springer, 2007.

6. Mathieu Giorgino and Martin Strecker. Verification of BDD algorithms by re-
finement of trees. Technical report, IRIT, 2010. http://www.irit.fr/~Mathieu.

Giorgino/Publications/GiSt2010BDD.html.
7. Mathieu Giorgino, Martin Strecker, Ralph Matthes, and Marc Pantel. Verification

of the Schorr-Waite algorithm - From trees to graphs, January 2010. http://www.
irit.fr/~Mathieu.Giorgino/Publications/SchorrWaite_TreesGraphs.html.

8. Thierry Hubert and Claude Marché. A case study of C source code verification: the
Schorr-Waite algorithm. In Software Engineering and Formal Methods (SEFM).
IEEE Computer Society, 2005.

9. Gérard Huet. Functional pearl: The zipper. Journal of Functional Programming,
7(5):549–554, September 1997.

10. Gerwin Klein, Philip Derrin, and Kevin Elphinstone. Experience report: sel4 —
formally verifying a high-performance microkernel. In International Conference on
Functional Programming (ICFP). ACM, 2009.

11. Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order logic.
Information and Computation, 199:200–227, 2005.

12. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL. A Proof
Assistant for Higher-Order Logic. LNCS 2283. Springer Verlag, 2002.

13. Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about pro-
grams that alter data structures. In Computer Science Logic (CSL), LNCS 2142,
pages 1–19. Springer, 2001.

14. Tobias Rittweiler and Florian Haftmann. Haskabelle – converting Haskell source
files to Isabelle/HOL theories, 2009. http://www.cl.cam.ac.uk/research/hvg/

Isabelle/haskabelle.html.
15. Norbert Schirmer and Makarius Wenzel. State spaces — the locale way. ENTCS,

254:161–179, 2009.
16. H. Schorr and W. Waite. An efficient machine independent procedure for garbage

collection in various list structures. Communications of the ACM, 10:501–506,
1967.

