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Abstract. Formal methods (such as interactive provers) are increas-
ingly used in software engineering. They offer a formal frame that guar-
antees the correctness of developments. Nevertheless, they use complex
notations that might be difficult to understand for unaccustomed users.
On the contrary, visual specification languages use intuitive notations
and allow to specify and understand software systems. Moreover, they
permit to easily generate graphical interfaces or editors for Domain Spe-
cific Languages (DSLs) starting from a meta-model. However, they suffer
from a lack of precise semantics. We are interested in combining these
two complementary technologies by mapping the elements of the one into
the other.

In this paper, we present a generic transformation process from func-
tional data structures, commonly used in proof assistants, to Ecore mod-
els and vice-versa. This translation method is based on Model-Driven
Engineering and defined by a set of bidirectional transformation rules.
These rules are presented with an illustrating example, along with an
implementation in the Eclipse environment.

1 Introduction

Formal methods (such as interactive proof assistants [13, 19]) are increasingly
used in software engineering to verify the correctness of software. They have a
solid formal basis and a precise semantics, but they use complex notations that
might be difficult to understand for unaccustomed users. On the contrary, Model
Driven Engineering (MDE) [3,15] supplies us with visual specification languages
as class diagrams [8] that use intuitive notations. They allow to specify, visu-
alize, understand and document software systems. However, they suffer from
lack of precise semantics. We are interested in combining these two complemen-
tary technologies by mapping the elements of the one into the other, using an
MDE-based transformation method.
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One possible scenario is to define the abstract syntax of a Domain Specific
Language (DSL) [20] to be used in the context of a formal verification, and then
to generate a corresponding Ecore meta-model to be able to use an MDE-based
tool chain for further processing. Inversely, the meta-model can than be modified
by an application engineer and serve as basis for re-generating the corresponding
data types. This operation may be used to find a compromise between the repre-
sentation of the client’s wishes on the meta-model and functional data structures
used in the proof. Furthermore, the meta-model can be used to easily generate a
textual (or graphical) editor using Xtext (respectively GMF:Graphical Modeling
Framework) facilities [9]. This work constitutes a first step towards using MDE
technology in an interactive proof development. The illustrating example is a
Java-like language enriched with assertions developed by ourselves for which no
off-the-shelf definition exists [2]. It constitute a sufficiently complex case study
of realistic size for a DSL.

This paper is structured as follows: we start in Section 2 by comparing our
approach with related work. Then, we present some preliminaries, to introduce
the main components of our work. Section 4 constitutes the technical core of
the article; it describes a translation from data models used in verification en-
vironments, to meta models in Ecore and backwards. We then illustrate the
methodology with an example in Section 5, before concluding with perspectives
of further work.

2 Related Work

EMF (Eclipse Modeling Framework) [4] models are comparable to Unified Mod-
eling Language (UML) class diagrams [8]. For this reason, we are interested in
the mappings from other formal languages to UML class diagrams and back
again. Some research is dedicated to establishing the link between these two
formalisms. We cite the work of Idani & al. that consists in a generic trans-
formation of UML models to B constructs [11] and vice-versa [10]. The authors
propose a metamodel-based transformation method based on defining a set of
structural and semantic mappings from UML to B (a formal method that allows
to construct a program by successive refinements, using abstract specifications).

Similarly, there is an MDE based transformation approach for generating
Alloy (a textual modeling language based on first order logic) specifications
from UML class diagrams and backwards [1, 16].

These methods enable to generate UML components from a formal descrip-
tion and backwards but their formal representation is significantly different from
our needs: functional data structures used in proof assistants.

Additionally, graph transformation tools [5, 7] permit to define source and
target meta-models all along with a set of transformation rules and use graphical
representations of instance models to ease the transformation process. However,
the verification functionality they offer is often limited to syntactic aspects and
does not allow to model deeper semantic properties (such as an operational
semantics of a programming language and proofs by bisimulation).
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Our work aims at narrowing the gap between interactive proof and metamod-
eling by offering a way to transform data structures used in interactive provers
to metamodels and vice-versa.

3 Preliminaries

3.1 Methodology

Model Driven Engineering is a software development methodology where the
(meta-)models are the central elements in the development process. A meta-
model defines the elements of a language. The instances of theses elements are
used to construct a model of the language. A model transformation is defined by
a mapping from elements of the source meta-model to those of the target meta-
model. Consequently, each model conforming to the source meta-model can be
automatically translated to an instance model of the target meta-model. The
Object Management Group (OMG) [14] defined the Model Driven Architecture
(MDA) standard [12], as specific incarnation of the MDE.

We apply this method in order to define a generic transformation processes
from datatypes (used in functional programming) to Ecore models and back-
wards. Figure 1 shows an overview of our approach. For the first direction of
the translation, we derive a meta-model of datatypes starting from an EBNF
representation of the datatype definition grammar [13]. This meta-model is the
source meta-model of our transformation. We also define a subset of the Ecore
meta-model [9] to be the target meta-model. In order to perform this transforma-
tion, we defined a set of transformation rules (detailed in Section 4.1) that maps
components of the meta-model of datatypes to those of Ecore meta-models.

We use the mapping between the constructs of the two meta-models to define
the reverse direction transformation rules in order to ensure the bidirectionality
of the rules. Bidirectionality [17] is one of the desired options of MDE-based
transformations. Indeed, assuming we start from a source model MS , then we
perform a transformation using a function f to get a target model MT . It is
important to derive an equivalent model to MS , as a result to the application of
f−1 on MT . Such a feature requires more restrictions on the Ecore models. The
transformation in the reverse direction is given in Section 4.2. The transforma-
tion rules of the two sides have been successfully implemented in an application
presented with an illustrating example (see Section 5).

3.2 The Datatype Meta-Model

Functional programming supplies us with a rich way to describe data structures.
However, since some features cannot be supported by Ecore, we have only de-
fined a subset that contains the essential element composing datatypes. Figure 2
depicts the datatype meta-model that is constructed from a subset of datatype’s
declarations grammar [13, 18]. We point out that we are mainly interested in
data structures. It correspond to the static part of the proofs. Except for the
case of accessors, the functions are not treated.
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Fig. 1. Overview of the Transformation Method

A Module may contain several Type Definitions. Each Type Definition has a
Type Constructor. It corresponds to the data types’ name. It is also composed
of at least one Constructor Declaration. These declarations are used to express
variant types: a disjoint union of types. Type declarations have names, it is
the name of a particular type case. It takes as argument some (optional) type
expressions which can either represent a Primitive Type (int, bool, float, etc.) or
also a data type defined previously in the Module. The list notation introduces
the predefined data structure for lists. The type option describes the presence or
the absence of a value. The ref feature is used for references (pointers).

We enriched the type definition grammar with a specific function named
Accessor. It is introduced by the annotation (*@accessor*). It allows assigning
a name to a special field of the type declaration. This element is essential for the
transformation process, its absence would lead to nameless structural features.

Representing Generic Types in Functional Programming Parameterized types
are important features in functional programming. They are used to express
polymorphic data structures. They are comparable to generics in Java and tem-
plates in C++. They permit to build different data structures that accept any
kinds of values. Each definition of a parameterized type is formed of a Type Con-
structor and a set of Type Parameters. The type expressions then can contain
a previously defined parameterized type or one of the specified parameters.

3.3 The Ecore Meta-Model

Our destination meta-model is a subset of the Ecore meta-model. Ecore is the
core language of EMF [4]. It allows to build Java applications based on model
definitions and to integrate them as Eclipse plug-ins.

The Meta Object Facility (MOF) set by the OMG defines a subset of UML
class diagram [8]. It represents the meta-meta-model of UML. Ecore is compara-
ble to MOF but quite simpler. They are similar in their ability to specify classes,
structural and behavioral features, inheritance and packages.
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Fig. 2. Datatype Meta-model

We use in the implementation of our approach Eclipse and its core language
Ecore. However, it would be possible to choose other solutions [5]. This choice is
due to the place that take Eclipse for the development and metamodeling. Also,
it offers a wide range of highly integrated tools.

Figure 3 represents a subset of the Ecore language. It contains essentially
the elements needed for our transformation process. Its main components are:

– The EPackage is the root element in serialized Ecore models. It encompasses
EClasses and EDataTypes.

– The EClass component represents classes in Ecore. It describes structure of
objects. It contains EAttributes and EOperations.

– The EDataType component represents the types of EAttributes, either pre-
defined (types: Integer, Boolean, Float, etc.) or defined by the user. There
is a special datatype to represent enumerated types EEnum

– EReferences is comparable to the UML Association link. It defines the kinds
of the objects that can be linked together. The containment feature is a
Boolean value that makes a stronger type of relationships. When it is set to
true, it represents a whole/part relationship.

Representing Generics with Ecore To support parametric polymorphism Ecore
was extended. Actually, parameterized types and operations can be specified,
and types with arguments can be used instead of regular types. the changes are
represented in the Ecore meta-model mainly in two new classes EGenericType

and ETypeparameter (they are distinguishable from the others on the Figure 3
by the green color). A parametrized type is then represented by a simple EClass

that contains one or more ETypeParameters. An EGenericType represents an
explicit reference to either an EClassifier or an ETypeParameter (but not
both at the same time). The eTypeArguments reference is used to contain the
EGenericTypes representing the type parameters.
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Fig. 3. Simplified subset of the Ecore Meta-model

4 From Datatypes to Meta-Models and Back again

This part details the automatic translation from functional datatypes to meta-
models, and backwards. The first direction of translation is further developed in
Section 4.1 while the reverse direction is presented in Section 4.2. The transfor-
mation implementation is spelled out and illustrated by an example(Section 5).

4.1 From Datatypes to Meta-Models

Table 1 presents the principal patterns of our recursive translation function. The
translation process is detailed and described in a formal notation in [6]. In this
table, we proceed with a description by example. The first column represents
possible instances of data types, while the second contains the transformation
rule applied for this kind of patterns. As for the last one, it shows the results of
applying the rule on the instance of data type.

Transforming Generics In case the datatype definition is polymorphic, , it is
translated into the representation of generics in the meta-model. It consists in
creating an EClass to represent the Type Constructor and for each type parame-
ter creating an ETypeParameter related to the EClass via the eTypeParameters
reference. Notice that we have to create an EGenericType for each class and type
parameters (related to their EGenericType via eTypeArguments) each time we
intend to use the EClass as a generic. Then, for each constructor declaration:

– Create an EClass to represent the Constructor Declaration which have the
same ETypeParameters as the Type Constructor one.

– Setting its eGenericSuperType referring to the generic type representing
the Type Constructor EClass.



Integrating a Formal Development for DSLs into Meta-Modeling 7

Datatypes translation description
Ecore Diagram
Components

datatype tpConstr=
Cn1 |Cn2 |... | CnN

Datatypes composed only of
constr-names (without
typexprs) are translated to
EEnums which are usually used
to model enumerated types in
Ecore.

datatype tpConstr =

Cn of nat∗ string ∗ ...∗
bool

When the datatype is formed
of only one constructor, it is
translated to an EClass. The
EClass name is the name of the
type constructor. Primitive
types give EAttributes in the
EClass. The names of the
attributes are given by the
accessors names.

datatype tpConstr =

Cn1 of string

|Cn2 of nat

|...
|CnN of bool

When constructor declarations
are composed of more than one
constructor declaration
containing type expressions, a
first EClass is created to
represent the type constructor
(tpConstr). Then, for each
constructor, an EClass is
created too, and inherits from
the tpConstr one.

datatype tpConstr=
Cn of tpConstr2

When a type expression
contains a type which is not a
primitive type, the latter has to
be previously defined in the
Isabelle [13] theory. Then, a
containment link is created
between the current EClass

and the EClass referring to the
datatype tpConstr2, and the
multiplicity is set to 1.

datatype tpConstr=
Cn oftpConstr2 option

The type expression type
option is used to express
whether a value is present or
not. It returns None, if it is
absent and Some value, if it is
present. This is modeled by
adopting the cardinality to
0..1.
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Datatypes translation description
Ecore Diagram
Components

datatype tpConstr=
Cn oftpConstr2 list

The type expressions can also
appear in the form of a type
list. In this case the
multiplicity is set to 0...*.

datatype tpConstr=
Cn of tpConstr2 ref

The last case that we deal
with, is type ref which is used
to represent pointers. It is
translated to references
without containments.

Table 1. Table illustrating the transformation rules from datatypes to meta-models

When it comes to use these generics to type EStructuralFeatures, we are
faced with two scenarios. First, when the type expression is a type parame-
ter ; the EStructuralFeature is typed with an EGenericType referring to the
ETypeParameter of the containing EClass. If instead the type expression cor-
responds to a parameterized type with type parameters it is typed with an
EGenericType representing the EClass with ETypeParameters.

To clarify this process, we use the example below. It consists in transforming
a parametrized tree data type. It has two parameters: the first corresponds to
the type of leaves and the second to the type of values contained in a Node. The
result after performing the translation is displayed in the arborescent Ecore

editor. The EGenericTypes are not explicitly represented in the EcoreDiagram.

Example:

datatype (’s,’t) tree =

Leaf ’t
|Node ’s ((’s,’t) tree) ((’s,’t) tree)
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4.2 From Meta-Models to Datatypes

To perform the reverse direction of the transformation, we draw heavily on the
mapping performed on the forward translation(Section 4.1). In our view, it is
important to successfully implement a function that is the inverse of the one
from datatype to meta-models. Indeed, the possibility of composing the two
functions, apply them on a model and find an equivalent model is paramount.
Even if it leads us to set some additional restrictions on the meta-model. For
example, the meta-models that contain inheritance of classes on more than one
level (degree) (a class that inherits of a class that inherits from another one etc.)
are not supported by our transformation rules. Table 2 summarizes the most
important features taken into account in our transformation process and their
translation in the functional world.

Ecore Components Functional Data Structures

EClass Type Constructor + Constructor

EAttribute Type Expression (Primitive Type)

EReference Type Expression

EEnum
Type Constructor + Constructors

(without Type Expressions )

EEnumLiteral
Constructor (without Type

Expression)

Inheritance
Type Constructor + Constructors

+Type Expressions

EGenericType Parameterized Datatype

ETypeParameter Type Parameter

Table 2. Table summarizing the transformation rules from Ecore meta-models to
datatypes

5 Implementation and Example

To illustrate our approach, we decided to take as example a description of a
DSL. It is a Java-like language enriched with assertions developed by ourselves
for which no off-the-shelf definition exists. It represents a real-time dialect of the
Java language allowing us to carry out specific static analyses of Java program
(details are described in [2]). Our approach is implemented using the Eclipse
environment.

Performing the translation for the whole language description would gener-
ate a huge metamodel that couldn’t be presented in the paper. We thus choose
to present a only an excerpt of it, corresponding to a method definition. Fig-
ure 4 shows a datatype taken from the Isabelle theory where the verifications
were performed. A method definition (in our DSL) is composed of a method
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declaration, a list of variables, and statements. Each method declaration has
an access modifier that specifies its kind. It also has a type, a name, and some
variable declarations. The stmt datatype describes the statements allowed in the
method body: Assignments, Conditions, Sequence of statements, Return and the
annotation statement (for time annotations). In this example we use Booleans,
integers, strings for types and values.

datatype binop = BArith| BCompar| BLogic
datatype value = BoolV bool| IntV int

|StringV string| V oidV
datatype binding = Local| Global
datatype var = V ar binding string
datatype expr = Const value

|V arE var
|BinOperation binop expr expr

datatype tp = BoolT | IntT | V oidT | StringT
datatype stmt = Assign var expr

|Seq stmt stmt
|Cond expr stmt stmt
|Return expr
|AnnotStmt int stmt

datatype accModifier =
Public |Private |Abstract|Static |Protected |Synchronized

datatype varDecl =
V arDecl (accModifier list) tp int

datatype methodDecl =
MethodDecl (accModifier list) tp string (varDecl list)

datatype methodDefn =
MethodDefn methodDecl (varDecl list) stmt

Fig. 4. Datatypes in Isabelle

This part of the Isabelle theory was given as input to the implementation of
our translation rules presented in Section 4.1. The resulting Ecore diagram is
presented in Figure 5. As it is shown on the figure, data type definitions built
only of type constructors (Tp, AccModifier, Binop, Binding) are treated as enu-
merations in the metamodel. Whereas Datatype MethodDecl composed of only
one constructor derive a single class. As for type expressions that represent a list
of types (like accModifier list in varDecl), they generate a structural feature in
the corresponding class and their multiplicities are set to (0...*). The result of
type definitions containing more than one constructor and at least a type expres-
sion (stmt and expr) is modeled as a number of classes inheriting from a main
one. Finally, the translation of the int, bool and string types is straightforward.
They are translated to respectively EInt, EBoolean and EString.
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Fig. 5. Resulting Ecore Diagram after Transformation

6 Conclusion

Our work constitutes a first step towards a combination of interactive proof
and Model Driven Engineering. We have presented an MDE-based method for
transforming data type definitions used in proof assistants to Class diagrams
and back again, using bidirectional transformation rules.

The approach is illustrated with the help of a Domain Specific Language
developed by ourselves. It is a Java-like language enriched with annotations.
Starting from data type definitions, set up for the semantic modeling of the DSL
we have been able to generate an EMF meta-model. The generated meta-model
is used for documenting and visualizing the DSL, it can also be manipulated in
the Eclipse workbench to generate a textual editor as an Eclipse plug-in.

We are working on coupling our work with the generation of provably correct
object oriented code from proof assistants.
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