
Verification of the Schorr-Waite algorithm –
From trees to graphs
(Extended version)

Mathieu Giorgino, Martin Strecker, Ralph Matthes, and Marc Pantel

IRIT (Institut de Recherche en Informatique de Toulouse)
Université de Toulouse

Abstract. This article proposes a method for proving the correctness
of graph algorithms by manipulating their spanning trees enriched with
additional references. We illustrate this concept with a proof of the cor-
rectness of a (pseudo-)imperative version of the Schorr-Waite algorithm
by refinement of a functional one working on trees. It is composed of
two orthogonal steps of refinement – functional to imperative and tree
to graph – finally merged to obtain the result. Our imperative specifi-
cations use monadic constructs and syntax sugar, making them close to
common imperative languages. This work has been realized within the
Isabelle/HOL proof assistant.

Key words: Verification of imperative programs, Pointer algorithms,
Program refinement

1 Introduction

The Schorr-Waite algorithm [SW67] is an in-place graph marking algorithm that
traverses a graph without building up a stack of nodes visited during traversal.
Instead, it codes the backtracking structure within the graph itself while de-
scending into the graph, and restores the original shape on the way back to the
root. This makes it particularly space-efficient and therefore appropriate for use
in garbage collectors.

A correctness argument for the Schorr-Waite (SW) algorithm is non-trivial,
and a large number of correctness proofs, both on paper and machine-assisted,
has accumulated over the years. All these approaches have in common that they
start from a low-level graph representation, as elements of a heap which are
related by pointers (see Section 7 for a discussion).

In this paper, we advocate a development that starts from high-level struc-
tures (Section 2), in particular inductively defined trees, and exploits as far as
possible the corresponding principles of computation (mostly structural recur-
sion) and reasoning (mostly structural induction). We then proceed by refine-
ment, along two dimensions: on the one hand, by mapping the inductively defined
structures to a low-level heap representation (Sections 3 and 4), on the other
hand, by adding pointers to the trees, to obtain genuine graphs (Sections 5).
These two developments are joined in Section 6.

We argue that this method has several advantages over methods that ma-
nipulate lower-level structures:

– Termination of the algorithms becomes easier to prove, as the size of the
underlying trees and similar measures can be used in the termination argu-
ment.

– Transformation and also preservation of structure is easier to express and to
prove than when working on a raw mesh of pointers. In particular, we can
state succinctly that the SW algorithm restores the original structure after
having traversed and marked it.

– Using structural reasoning such as induction allows a higher degree of proof
automation: the prover can apply rewriting which is more directed than the
kind of predicate-logic reasoning that arises in a relational representation of
pointer structures.

Technically, the main ingredients of our development are, on the higher level,
spanning trees with additional pointers parting from the leaf nodes to represent
arbitrary (finite) graphs. During the execution of the algorithm, the state space is
partitioned into disjoint areas that may only be linked by pointers which satisfy
specific invariants. On the lower level, we use state-transformer and state-reader
monads for representing imperative programs. The two levels are related by a
refinement relation that is preserved during execution of the algorithms.

Even though, taken separately, most of these ingredients are not new (see
Section 7 for a discussion of related work), this paper highlights the fact that
relatively complex graph algorithms can be dealt with elegantly when perceiving
them as refinements of tree algorithms.

The entire development has been carried out in the Isabelle theorem prover
[NPW02], which offers a high degree of automation – most proofs are just a few
lines long. The formalization itself does not exploit any specificities of Isabelle,
but we use Isabelle’s syntax definition facilities for devising a readable notation
for imperative programs.

2 Schorr-Waite on Pure Trees

A few words on notation before starting the development itself: Isabelle/HOL’s
syntax is a combination of mathematical notation and ML language. Type vari-
ables are written ′a, ′b, . . . , total functions from α to β are denoted by α ⇒ β
and type constructors are post-fix by default (like ′a list). −→/=⇒ are both im-
plication on term-level/meta-level where the meta-level is the domain of proofs.
[[a0;...;an]] =⇒ b abbreviates a0 =⇒ (. . . =⇒ (an =⇒ a). . .). Construction and
concatenation operators on lists are represented by x # xs and xs @ ys. Some-
times we will judiciously choose the right level of nesting for pattern matching
in definitions, in order to take advantage of case splitting to improve automation
in proofs.

The high-level version of the algorithm operates on inductively defined trees,
whose definition is standard:

2

datatype (′a, ′l) tree =
Leaf ′l
| Node ′a ((′a, ′l) tree) ((′a, ′l) tree)

The SW algorithm requires a tag in each node, consisting of its mark, here
represented by a boolean value (True for marked, False for unmarked) and a
“direction” (left or right), telling the algorithm how to backtrack. We store this
information as follows:

datatype dir = L | R

lemma d-nR-L [simp]: (d 6= R) = (d = L)
by (case-tac d) simp-all

lemma d-nL-R [simp]: (d 6= L) = (d = R)
by (case-tac d) simp-all

datatype ′a tag = Tag bool dir ′a

We use the accessors nmark , ndir , nval for retrieving the respective compo-
nents, and we define some simple counting functions

consts
nmark :: ′a tag ⇒ bool
ndir :: ′a tag ⇒ dir
nval :: ′a tag ⇒ ′a

primrec nmark (Tag m d v) = m
primrec ndir (Tag m d v) = d
primrec nval (Tag m d v) = v

consts count :: (′a ⇒ bool) ⇒ (′a, ′l) tree ⇒ nat
primrec

count p (Leaf rf) = 0
count p (Node v l r) = (if (p v) then 1 else 0) + count p l + count p r

fun unmarked-count :: (′a tag , ′l) tree ⇒ nat
where unmarked-count t = count (λ n. (¬ nmark n)) t

fun left-count :: (′a tag , ′l) tree ⇒ nat
where left-count t = count (λ n. (ndir n = L)) t

With these preliminaries, we can describe the SW algorithm. It uses two
“pointers” t and p (which, for the time being, are trees): t points to the root of
the tree to be traversed, and p to the previously visited node. There are three
main operations:

– As long as the t node is unmarked, push moves t down the left subtree, turns
its left pointer upwards and makes p point to the former t node. The latter
node is then marked and its direction component set to “left”.

– Eventually, the left subtree will have been marked, i. e. t’s mark is True, or t
is a Leaf. If p’s direction component says “left”, the swing operation makes

3

t point to p’s right subtree, the roles of p’s left and right subtree pointers
are inversed, and the direction component is set to “right”.

– Finally, if, after the recursive descent, the right subtree is marked and p’s di-
rection component says “right”, the pop operation will make the two pointers
move up one level, reestablishing the original shape of t.

The algorithm is supposed to start with an empty p, and it stops if p is empty
again and t is marked. The three operations are illustrated in Figure 1 in which
dots indicate intermediate steps and leaves are not represented.

p

t

Push

t

p

t

p

p

tp

t

PopSwing

p

t

......

Fig. 1. Operations of the Schorr-Waite algorithm.

Our algorithm uses two auxiliary functions sw-term (termination condition)
and sw-body, the body of the algorithm with three main branches as in the
informal characterisation above. The function sw-body should not be called if t
is marked and p is a Leaf, so it returns an insignificant result in this case.

fun sw-term :: ((′a tag , ′l) tree ∗ (′a tag , ′l) tree) ⇒ bool where
sw-term (p, t) = (case p of

Leaf - ⇒ (case t of Leaf - ⇒ True | (Node (Tag m d v) tlf tr) ⇒ m)
| - ⇒ False)

fun sw-body :: ((′a tag , ′l) tree ∗ (′a tag , ′l) tree)
⇒ ((′a tag , ′l) tree ∗ (′a tag , ′l) tree) where

sw-body (p, t) =
(case t of

(Node (Tag False d v) tlf tr) ⇒ ((Node (Tag True L v) p tr), tlf)
| - ⇒ (case p of

Leaf - ⇒ (p, t)
| (Node (Tag m L v) pl pr) ⇒ ((Node (Tag m R v) t pl), pr)
| (Node (Tag m R v) pl pr) ⇒ (pr , (Node (Tag m R v) pl t))))

The SW algorithm on trees, sw-tr, is now easy to define. We note in passing
that sw-tr is tail recursive. If coding it in a functional programming language,
your favorite compiler will most likely convert it to a while loop that traverses
the tree without building up a stack.

function sw-tr :: ((′a tag , ′l) tree ∗ (′a tag , ′l) tree)
⇒ ((′a tag , ′l) tree ∗ (′a tag , ′l) tree)

where sw-tr args = (if (sw-term args) then args else sw-tr (sw-body args))
by pat-completeness auto

We still have to prove the termination of the algorithm. We note that either
the number of unmarked nodes decreases (during push), or it remains unchanged

4

and the number of nodes with “left” direction decreases (during swing), or these
two numbers remain unchanged and the p tree becomes smaller (during pop).
This double lexicographic order is expressed in Isabelle as follows (with the
predefined function size, and functions unmarked-count and left-count as defined
before):

termination sw-tr
apply (relation measures [
λ (p,t). unmarked-count p + unmarked-count t ,
λ (p,t). left-count p + left-count t ,
λ (p,t). size p])

by simp (fastsimp split add : tree.splits tag .splits)

declare sw-tr .simps [simp del]

Please note that the algorithm works on type (′a tag , ′l) tree with an ar-
bitrary type for the data in the leaf nodes, which will later be instantiated by
types for references.

For a better understanding of invariants of the algorithm, let’s take a look at
a typical execution, depicted in Figure 2, with some intermediate steps omitted.

p

t t

p

t

p p

t

t

p

t

p

Fig. 2. Typical execution of the Schorr-Waite algorithm

The first thing to note is that the t tree should be consistently marked: Either,
it is completely unmarked, or it is completely marked. This is a requirement for
the initial tree: A marked root with unmarked nodes hidden below would cause
the algorithm to return permaturely, without having explored the whole tree. We
sharpen this requirement, by postulating that in a t tree, the direction is “right”
iff the node is marked. This is not a strict necessity, but facilitates stating our
correctness theorem. We thus arrive at the following two properties t-marked
True and t-marked False for t trees that are defined in one go:

consts t-marked :: bool ⇒ (′a tag , ′l) tree ⇒ bool
primrec

t-marked m (Leaf rf) = True
t-marked m (Node n l r) =

(case n of (Tag m ′ d v) ⇒
(((d = R) = m) ∧ m ′ = m ∧ t-marked m l ∧ t-marked m r))

We can similarly state a property of a p tree. We note that such a tree is
composed of an upwards branch (the bent arcs in Figure 2) that is again a
p-shaped tree, and a downwards branch (the straight lines in Figure 2) that,

5

depending on the direction, is either a previously marked t tree or an as yet
unexplored (and therefore completely unmarked) t tree:

consts p-marked :: (′a tag , ′l) tree ⇒ bool
primrec

p-marked (Leaf rf) = True
p-marked (Node n l r) =

(case n of (Tag m d v) ⇒
(case d of

L ⇒ (m ∧ p-marked l ∧ t-marked False r)
| R ⇒ (m ∧ t-marked True l ∧ p-marked r)))

Indeed, these two properties are invariants of sw-body :

lemma t-marked-pres:
[[(p ′, t ′) = sw-body (p, t); p-marked p; t-marked m t]] =⇒ (∃m. t-marked m t ′)

by (fastsimp split add : tree.splits tag .splits bool .splits dir .splits)

lemma p-marked-pres:
[[(p ′, t ′) = sw-body (p, t); p-marked p; t-marked m t]] =⇒ p-marked p ′

by (simp split add : tree.splits tag .splits bool .splits dir .splits)+

lemma t-marked-pres2 :
[[p-marked p; t-marked m t]] =⇒ ∃m. t-marked m (snd (sw-body (p, t)))

by (fastsimp split add : tree.splits tag .splits bool .splits dir .splits)

lemma p-marked-pres2 :
[[p-marked p; t-marked m t]] =⇒ p-marked (fst (sw-body (p, t)))

by (fastsimp split add : tree.splits tag .splits bool .splits dir .splits)

What should the correctness criterion for sw-tr be? We would like to state
that sw-tr behaves like a traditional recursive tree traversal (implicitly using a
stack!) that sets the mark to True. Unfortunately, SW not only modifies the
mark, but also the direction, so the two components have to be taken into ac-
count:

fun mark-all :: bool ⇒ dir ⇒ (′a tag , ′l) tree ⇒ (′a tag , ′l) tree where
mark-all m d (Leaf rf) = Leaf rf
| mark-all m d (Node (Tag m ′ d ′ v) l r) =

(Node (Tag m d v) (mark-all m d l) (mark-all m d r))

By using the function mark-all we also capture the fact that the shape of the
tree is unaltered after traversal.

Of course, if a tree is consistently marked, it is not modified by marking with
True and direction “right”:

lemma t-marked-R-mark-all [rule-format , simp]:
t-marked True t −→ mark-all True R t = t

by (induct t) (auto split add : tag .splits)

A key element of the correctness proof is that at each moment of the SW
algorithm, given the p and t trees, we can reconstruct the shape of the original

6

tree (if not its marks) by climbing up the p tree and putting back in place its
subtrees:

fun reconstruct :: ((′a tag , ′l) tree ∗ (′a tag , ′l) tree) ⇒ (′a tag , ′l) tree where
reconstruct (Leaf rf , t) = t
| reconstruct ((Node n l r), t) =

(case n of (Tag m d v) ⇒
(case d of

L ⇒ reconstruct (l , (Node (Tag m d v) t r))
| R ⇒ reconstruct (r , (Node (Tag m d v) l t))))

For this reason, if two trees t and t′ have the same shape (i. e. are the same
after marking), they are also of the same shape after reconstruction with the
same p:

lemma mark-all-reconstruct [rule-format]:
∀ t t ′. mark-all m d t = mark-all m d t ′ −→
mark-all m d (reconstruct (p, t)) = mark-all m d (reconstruct (p, t ′))

by (induct p) (clarsimp split add : tag .splits dir .splits)+

Application of sw-body does not change the shape of the original tree that p
and t are reconstructed to:

lemma sw-body-mark-all-reconstruct :
[[p-marked p; t-marked m ′ t ; ¬ sw-term (p, t)]] =⇒
mark-all m d (reconstruct (sw-body (p, t))) = mark-all m d (reconstruct (p, t))

by (fastsimp split add : tree.splits tag .splits bool .splits dir .splits
intro: mark-all-reconstruct)

Obviously, if t is t-marked and we are in the final state of the recursion
(sw-term is satisfied), then t is marked as true and p is empty. Together with
the invariant of sw-body just identified, an induction on the form of the recursion
of sw-tr gives us:

lemma sw-tr-mark-all-reconstruct [rule-format]:
let (p, t) = args in
(∀ m. t-marked m t −→ p-marked p −→

(let (p ′, t ′) = (sw-tr args) in
mark-all True R (reconstruct (p, t)) = t ′ ∧ (∃ rf . p ′ = Leaf rf)))

apply (induct args rule: sw-tr .induct)
apply atomize
apply (subst sw-tr .simps)
apply (clarsimp simp add : split-def Let-def simp del : sw-body .simps)
apply (fastsimp simp add : sw-body-mark-all-reconstruct

p-marked-pres2 t-marked-pres2 simp del : sw-body .simps
split add : tree.splits tag .splits)

done

For a run of sw-tr starting with an empty p, we obtain the desired theorem
(which, of course, is only interesting for the non-trivial case m=False):

theorem sw-tr-correct : t-marked m t
=⇒ sw-tr (Leaf rf , t) = (p ′, t ′)

7

=⇒ t ′ = mark-all True R t ∧ (∃ rf . p ′ = Leaf rf)
by (insert sw-tr-mark-all-reconstruct [of (Leaf rf , t)]) fastsimp

To show the brevity of the development, we have reproduced the entire Is-
abelle script up to this point (we will be less exhaustive in the following).

3 Imperative Language and its Memory Model

This section presents a way to manipulate low-level programs. We use a heap-
transformer monad providing means to reason about monadic/imperative code
along with a nice syntax, and that should allow to generate similar executable
code.

The theory Imperative HOL [BKH+08] discussed in Section 7 already imple-
ments such a monad, however our development started independently of it and
we have then used it to improve our version, without generation/extraction for
the moment.

3.1 The State Transformer Monad

In this section we define the state-reader and state-transformer monads and a
syntax seamlessly mixing them. We encapsulate them in the SR – respectively
ST – datatypes, as functions from a state to a return value – respectively a pair
of return value and state.

We can escape from these datatypes with the runSR – respectively runST
and evalST – functions which are intended to be used only in logical parts
(theorems and proofs) and that should not be extractible.

datatype (′a, ′s) SR = SR ′s ⇒ ′a
datatype (′a, ′s) ST = ST ′s ⇒ ′a × ′s

consts
runSR :: (′a, ′s) SR ⇒ ′s ⇒ ′a
runST :: (′a, ′s) ST ⇒ ′s ⇒ ′a × ′s

primrec runSR (SR m) = m
primrec runST (ST m) = m

abbreviation evalST :: (′a, ′s) ST ⇒ ′s ⇒ ′a
where evalST fm s == fst (runST fm s)

The return (also called unit) and bind functions for manipulating the mon-
ads are then defined classicaly with the infix notations DSR and DST for binds.
We add also the function SRtoST translating state-reader monads to state-
transformer monads and the function thenST (with infix notation BST) abbre-
viating binding without value transfer.

consts

8

returnSR :: ′a ⇒ (′a, ′s) SR
returnST :: ′a ⇒ (′a, ′s) ST
bindSR :: (′a, ′s) SR ⇒ (′a ⇒ (′b, ′s) SR) ⇒ (′b, ′s) SR (infixr DSR)
bindST :: (′a, ′s) ST ⇒ (′a ⇒ (′b, ′s) ST) ⇒ (′b, ′s) ST (infixr DST)
SRtoST :: (′a, ′s) SR ⇒ (′a, ′s) ST

defs
returnSR a == SR (λ s. a)
returnST a == ST (λ s. (a, s))
bindSR m f == SR (λ s. (λ x . runSR (f x) s) (runSR m s))
bindST m f == ST (λ s. (λ (x , s ′). runST (f x) s ′) (runST m s))
SRtoST sr == ST (λ s. (runSR sr s, s))

abbreviation
thenST :: (′a, ′s) ST ⇒ (′b, ′s) ST ⇒ (′b, ′s) ST (infixr BST 55)
where a BST b == a DST (λ -. b)

We can then verify the monad laws:

lemma monadSRlaws :
∀ v f . (returnSR v) DSR f = f v
∀ a. a DSR returnSR = a
∀ (x ::(′s, ′a) SR) f g . (x DSR f) DSR g = x DSR (λ v . ((f v) DSR g))
by(simp-all add : expand-SR-eq SR-run0)

lemma monadSTlaws :
∀ v f . (returnST v) DST f = f v
∀ a. a DST returnST = a
∀ (x ::(′a, ′s) ST) f g . (x DST f) DST g = x DST (λ v . ((f v) DST g))
by (simp-all add : expand-ST-eq ST-run0 split :prod .splits)

We define also syntax translations to use the Haskell-like do-notation.
The principal difference between the Haskell do-notation and this one is

the use of state-readers for which order does not matter. With some syntax
transformations, we can simply compose several state readers into one as well
as give them as arguments to state writers, almost as it is done in imperative
languages (for which state is the heap). In an adapted context – i. e. in doSR{. . . }
or doST{. . . } – we can so use state readers in place of expressions by simply
putting them in 〈. . . 〉, the current state being automatically provided to them,
only thanks to the syntax transformation which propagates the same state to
all 〈. . . 〉. We also add syntax for let (letST x = aSR; bST) and if (if (aSR) {bST}
else {cST}).

We describe this syntax with a rewriting system, applied bottom-up – that
is also the procedure applied by the Isabelle parser. This means that arguments
of the rule are in normal form when the rule is applied.

We underscore purely syntactic functions:

9

doSTSR which transforms a state-reader returning a state-transformer – of
type ((′a, ′s) ST , ′s) SR – into a state-transformer – of type (′a, ′s) ST

doSR0 which takes a variable s representing the state as argument and replaces
all 〈 e 〉 by runST e s in an expression.

doSTSR p ≡ ST (λs. runST (doSR0 s p) s)
doSR0 s p ≡ p[runSR (doSR0 s x) s / 〈 x 〉]

doST { x ← p; q } −→ (doSTSR p) DST (λx . doST { q })
doST { p; q } −→ (doSTSR p) BST doST { q }
doST { p } −→ doSTSR p
doST { letST x = p; q } −→ doST { x ← SRtoST (doSR { p }); q }

doSR { p } −→ SR (λs. doSR0 s p)
For example with f

′a ⇒ (′b, ′s) ST, a(′a, ′s) SR, g((), ′s) ST and h
′b ⇒ ′d, all

these expressions are equivalent:

– doST { x ← f 〈a〉; g ; returnST (h x)}
– doST { va ← SRtoST a; x ← f va; g ; returnST (h x)}
– doST { x ← ST (λs. runST (f (runSR a s)) s); g ; returnST (h x)}
– ST (λs. runST (f (runSR a s)) s) D (λx . g B returnST (h x))

We also add syntax for if :
doST {if (c) {a} else {b}} −→ doST {if 〈doSR{c}〉 then (doST{a}) else (doST{b})}

and we define the whileST combinator, inspired from the while combinator
definition of the Isabelle library.

As explained in the Isabelle function tutorial, in general, termination of func-
tions has to be proved to give access to unconditional simplification rules. This
is because functions must be total to prevent inconsistencies. However, in the
particular case of tail-recursive functions, it is not necessary because there is a
total function satisfying them, even if they are non-terminating.

We can thus define the whileST combinator by simply adding the tailrec
option to the function definition.

The only difference with the while combinator, is the encapsulation in mon-
ads.

function (tailrec)
mwhile :: (′v ⇒ (bool , ′s) SR) ⇒ (′v ⇒ (′v , ′s) ST) ⇒ ′v ⇒ ′s ⇒ (′v × ′s)

where
mwhile-unfold [simp del]: mwhile b c v s =
(if runSR (b v) s

then (case (runST (c v) s) of (v ′, s ′) ⇒ mwhile b c v ′ s ′)
else (v , s))

constdefs whileST :: (′v ⇒ (bool , ′s) SR) ⇒ (′v ⇒ (′v , ′s) ST) ⇒ ′v ⇒ (′v , ′s) ST
where whileST b c v == ST (mwhile b c v)

We finally add syntax for whileST :

10

[v = v0] while (c) {a} −→ whileST (λv . doSR{c}) (λv . doST{a}) v0
while (c) {a} −→ whileST (λ-. doSR{c}) (λ-. doST{a}) () and

we can compare the two definitions: whileST b c v = (doST{if (〈b v〉){v ′ ← c
v ; whileST b c v ′}else{returnST v}})
while b c v = (if b v then while b c (c v) else v)

3.2 The Heap Transformer Monad

We define a heap we will use as the state in the state-reader/transformer monads.
We represent it by an extensible record containing a field for the values.

As the Schorr-Waite algorithm doesn’t need allocation of new references, our
heap simply is a total function from references to values. (We use a record here
because of developments already under way and needing further components.)

record (′n, ′v) heap = heap :: ′n ⇒ ′v
abbreviation heap-upd s n v == s(|heap := (heap s)(n := v)|)

We assume that we have a data type of references, which can either be Null
or point to a defined location:

datatype ′n ref = Ref ′n | Null

To read and write the heap, we define the corresponding primitives read and
write. To access directly to the fields of structures in the heap, we also add the
get (a·b), rget (r → b) and rupdate (r → b := v) operators, taking an accessor
(b) as argument.

4 Implementation for Pure Trees

In this section, we provide a low-level representation of trees as structures con-
nected by pointers that are manipulated by an imperative program. This is the
typical representation in programming languages like C, and it is also used in
most correctness proofs of SW.

4.1 Data Structures

These structures are either empty (corresponding to a leaf with a null pointer,
as we will see later) or nodes with references to the left and right subtree:

datatype (′a, ′r) struct = EmptyS | Struct ′a (′r ref) (′r ref)

We define then accessors $v (value) $l (left) and $r (right) for the (′a, ′r)
struct datatype, and accessors $mark, $dir and $val for the ′a tag datatype.

consts

11

struct-v :: (′a, ′r) struct ⇒ ′a ⇒ (′a, ′r) struct ($v)
struct-l :: (′a, ′r) struct ⇒ ′r ref ⇒ (′a, ′r) struct ($l)
struct-r :: (′a, ′r) struct ⇒ ′r ref ⇒ (′a, ′r) struct ($r)

primrec
struct-v (Struct v l r) v ′ = (Struct v ′ l r)
struct-v EmptyS v ′ = EmptyS

primrec
struct-l (Struct v l r) l ′ = (Struct v l ′ r)
struct-l EmptyS l ′ = EmptyS

primrec
struct-r (Struct v l r) r ′ = (Struct v l r ′)
struct-r EmptyS r ′ = EmptyS

and at the same time, accessors for the ′a tag datatype defined in Section 2.

consts
acc-mark :: ′a tag ⇒ bool ⇒ ′a tag ($mark)
acc-dir :: ′a tag ⇒ dir ⇒ ′a tag ($dir)
acc-val :: ′a tag ⇒ ′a ⇒ ′a tag ($val)

primrec acc-mark (Tag m d v) m ′ = (Tag m ′ d v)
primrec acc-dir (Tag m d v) d ′ = (Tag m d ′ v)
primrec acc-val (Tag m d v) v ′ = (Tag m d v ′)

Traditionally, in language semantics, the memory is divided into a heap and
a stack, where the latter contains the variables. In our particular case, we choose
a greatly simplified representation, because we just have to accommodate the
variables pointing to the trees p and t. Our heap will be a type abbreviation for
heaps whose values are structures:

types (′r , ′a) str-heap = (′r , (′a, ′r) struct) heap

4.2 An Imperative Algorithm

We now have an idea of the low-level memory representation of trees and can
start divising an imperative program that manipulates them (as we will see, with
a similar outcome as the high-level program of Section 2). The program is a while
loop, written in monadic style, that has as one main ingredient a termination
condition:

constdefs
sw-impl-term :: (′r ref × ′r ref) ⇒ (bool , (′r , ′v tag) str-heap) SR
sw-impl-term vs == doSR { (case vs of (ref-p, ref-t) ⇒
(case ref-p of

Null ⇒ (case ref-t of Null ⇒ True | t ⇒ ((〈 read t 〉·$v)·$mark))
| - ⇒ False))}

The second main ingredient of the while loop is its body:

constdefs

12

sw-impl-body :: (′r ref × ′r ref) ⇒ (′r ref × ′r ref , (′r , ′v tag) str-heap) ST
sw-impl-body vs == (case vs of (p, t) ⇒ doST {

if (case t of Null ⇒ True | - ⇒ (〈read t〉·$v)·$mark) {
(if (〈 p → ($v oo $dir) 〉 = L) { (∗∗ swing ∗∗)

letST rt = 〈p → $r〉;
p → $r := 〈p → $l〉;
p → $l := t ;
p → ($v oo $dir) := R;
returnST (p, rt)

} else { (∗∗ pop ∗∗)
letST rp = 〈p → $r〉;
p → $r := t ;
returnST (rp, p)

})
} else { (∗∗ push ∗∗)

letST rt = 〈t → $l〉;
t → $l := p;
t → ($v oo $mark) := True;
t → ($v oo $dir) := L;
returnST (t , rt) }

})

The termination condition and loop body are combined in the following im-
perative program:

fun sw-impl-tr :: (′r ref × ′r ref) ⇒ (′r ref × ′r ref , (′r , ′v tag) str-heap) ST
where sw-impl-tr pt =

(doST{ [vs = pt] while (¬ 〈 sw-impl-term vs 〉) { sw-impl-body vs }})

4.3 Correctness

Before we can describe the implementation of inductively defined trees in low-
level memory, let us note that we need to have a means of expressing which node
of a tree is mapped to which memory location. For this, we need trees adorned
with address information:

datatype (′r , ′v) addr = Addr ′r ′v

For later use, we also introduce some accessors:

primrec addr-of-tag :: (′r , ′v) addr tag ⇒ ′r
where addr-of-tag (Tag m d av) = (case av of (Addr ref v) ⇒ ref)
primrec val-of-tag :: (′r , ′v) addr tag ⇒ ′v
where val-of-tag (Tag m d av) = (case av of (Addr ref v) ⇒ v)

We can now turn to characterizing the implementation relation of trees in
memory, which we define gradually, starting with a relation which expresses that
a (non-empty) node n with subtrees l and r is represented in state s. Remember
that node n contains its address in memory. It is not possible that the structure
at this address is empty. We therefore find a structure with a field corresponding
to the value of n (just remove the address, which is not represented in the
structure) and left and right pointers to the l and r subtrees:

13

primrec val-proj-of-tag :: (′r , ′v) addr tag ⇒ ′v tag
where val-proj-of-tag (Tag m d av) = (case av of (Addr ref v) ⇒ (Tag m d v))

constdefs struct-alloc-in-state ::
(′t ⇒ ′r ref) ⇒ (′r , ′v) addr tag ⇒ ′t ⇒ ′t ⇒ (′r , ′v tag) str-heap ⇒ bool
struct-alloc-in-state ac n l r s ==
(case (heap s (addr-of-tag n)) of

EmptyS ⇒ False
| Struct ns ref-l ref-r ⇒ ns = val-proj-of-tag n ∧ ref-l = ac l ∧ ref-r = ac r)

Please ignore the accessor parameter ac for the moment. We will instantiate
it with different functions, depending on whether we are working on trees (this
section) or on graphs (in Section 6).

Given the representation of a node in memory, we can define the represen-
tation of a tree: Just traverse the tree recursively and check that each node is
correctly represented:

consts tree-alloc-in-state :: (((′r , ′v) addr tag , ′l) tree ⇒ ′r ref) ⇒
((′r , ′v) addr tag , ′l) tree ⇒ (′r , ′v tag) str-heap ⇒ bool

primrec
tree-alloc-in-state ac (Leaf rf) s = True
tree-alloc-in-state ac (Node n l r) s =

(struct-alloc-in-state ac n l r s
∧ tree-alloc-in-state ac l s ∧ tree-alloc-in-state ac r s)

Finally, a configuration (the p and t trees) is correctly represented if each of
the trees is, and the p variable contains a reference to the p tree, and similarly
for t :

constdefs config-alloc-in-state :: (((′r , ′v) addr tag , ′l) tree ⇒ ′r ref) ⇒
((′r , ′v) addr tag , ′l) tree ∗ ((′r , ′v) addr tag , ′l) tree ⇒
(′r ref × ′r ref) × (′r , ′v tag) str-heap ⇒ bool where

config-alloc-in-state ac vs rs ==
(let ((p,t),((ref-p, ref-t),s)) = (vs, rs) in

tree-alloc-in-state ac p s ∧ tree-alloc-in-state ac t s ∧ ref-p = ac p ∧ ref-t = ac t)

Let us now present the first intended instantiation of the ac parameter ap-
pearing in the above definitions: It is a function that returns the address of a
non-empty node, and always Null for a leaf:

consts addr-of :: ((′r , ′v) addr tag , ′b) tree ⇒ ′r ref
primrec

addr-of (Leaf rf) = Null
addr-of (Node n l r) = Ref (addr-of-tag n)

We can now state our first result: for a couple of p and t trees correctly
allocated in a state s, the low-level and high-level algorithms have the same
termination behaviour:

lemma sw-impl-term-sw-term:
config-alloc-in-state addr-of pt (ref-pt , s)

14

=⇒ runSR (sw-impl-term ref-pt) s = sw-term pt

Before discussing the correctness proof, let us remark that the references
occurring in the trees have to be unique. Otherwise, the representation of a
tree in memory might not be a tree any more, but might contain loops or joint
subtrees. Given the list of references occuring in a tree:

consts reach :: ((′r , ′v) addr tag , ′l) tree ⇒ ′r list
primrec

reach (Leaf rf) = []
reach (Node n l r) = (addr-of-tag n) # (reach l) @ (reach r)

we will in the following require the p and t trees to have disjoint (“distinct”)
reference lists.

The correctness argument of the imperative algorithm is now given in the
form of a simulation theorem: A computation with sw-tr carried out on trees p
and t and producing trees p ′ and t ′ can be simulated by a computation with
sw-impl-tr starting in a state implementing p and t, and ending in a state im-
plementing p ′ and t ′.

The proof is by induction on the structure of sw-tr, and the induction step
requires sw-body and sw-impl-body to proceed in lockstep.

lemma sw-impl-body-config-alloc:
[[config-alloc-in-state addr-of (p, t) ((ref-p, ref-t), s); t-marked m t ; p-marked p;
¬ runSR (sw-impl-term (ref-p, ref-t)) s; distinct (reach p @ reach t)]]

=⇒ config-alloc-in-state addr-of
(sw-body (p, t)) (runST (sw-impl-body (ref-p, ref-t)) s)

Of course, the preconditions of this lemma have to remain invariant as well.
We have already proved this for t-marked and p-marked in Section 2, and we
can also show invariance of the property separating p and t :

lemma sw-impl-body-distinct [rule-format]:
[[(p ′, t ′) = sw-body (p, t); t-marked m t ; p-marked p;
distinct (reach p @ reach t)]] =⇒ distinct (reach p ′ @ reach t ′)

The proofs of both lemmas go through without much ado: essentially a single
fastsimp command in Isabelle. For proving the correctness theorem for the
entire implementation, we have derived an easier to handle induction principle:

lemma sw-tr-induct-rule-rel [rule-format]:
assumes invariant :!!a vs s. P a (vs,s) −→ ¬ sw-term a
−→ P (sw-body a) (runST (sw-impl-body vs) s)
and terminate: !!a s. P a s −→ sw-term a −→ Q a s
and config : !! a s. P a s =⇒ config-alloc-in-state addr-of a s

shows ∀ vs s. P a (vs,s) −→ Q (sw-tr a) (runST (sw-impl-tr vs) s)

and apply it in the proof of the theorem:

lemma impl-correct :
(∃ m. t-marked m t) ∧ p-marked p ∧ distinct (reach p @ reach t) ∧
config-alloc-in-state addr-of (p, t) (vs,s)

15

=⇒ config-alloc-in-state addr-of (sw-tr (p, t)) (runST (sw-impl-tr vs) s)

lemma [simp]: obj 6= EmptyS =⇒ (($l obj v)·$l) = v
by simp

5 Schorr-Waite on Trees with Pointers

The Schorr-Waite algorithm has originally been conceived for genuine graphs,
and not for trees. We will now add “pointers” to our trees to obtain a repre-
sentation of a graph as a spanning tree with additional pointers. This is readily
done, by instantiating the type variables of the leaves to the type of references.
Thus, a leaf can now represent a null pointer (Leaf Null), or a reference to r, of
the form Leaf (Ref r).

1

2 3

Fig. 3. A tree with additional pointers (drawn as dashed lines)

For example, the graph of Figure 3 could be represented by the following
tree, with references of type nat :

Node (Tag False L (Addr 1 ()))
(Node (Tag False L (Addr 2 ())) (Leaf Null) (Leaf Null))
(Node (Tag False L (Addr 3 ())) (Leaf (Ref 2)) (Leaf Null))

A given graph might be represented by different spanning trees with addi-
tional pointers, but the choice is not indifferent: it is important that the graph
is represented by a spanning tree that has an appropriate form, so that the
low-level algorithm of Section 4 starts backtracking at the right moment. To
characterize this form and to get an intuition for the simulation proof presented
in Section 6, let’s take a look at a “good” (Figure 4) and a “bad” spanning tree
(Figure 5).

In Figure 4, the decisive step occurs when p points to node 3. Since the high-
level algorithm proceeds structurally, it does not follow the additional pointer.
Its t tree will therefore be a leaf, and the algorithm will start backtracking at
this moment. The low-level representation does not distinguish between pointers
to subtrees and additional pointers in leaf nodes, so that the t pointer will follow
the link to node 4, just to discover that this node is already marked. For this
reason, also the low-level algorithm will start backtracking.

The situation is different in Figure 5, when p reaches node 2. The high-level
algorithm finishes its recursive descent at this point and starts backtracking,

16

p

t

2

1

54

3

p

tt

p

t

p2

1

54

32

1

54

3

Swing

Swing

Fig. 4. Low-level graph with a “good” spanning tree

t

p

p

2

1

54

3

p

t

t

Pop

Push

t

p

2

1

54

3 2

1

54

3

Fig. 5. The same graph with a bad spanning tree

leaving node 4 unmarked. However, the low-level version proceeds to node 4
with its t pointer, marks it and starts exploring its subtrees. At this point, the
high-level and low-level versions of the algorithm start diverging irrecoverably.

What then, more generally, is a “good” spanning tree? It is one where all
additional pointers reference nodes that have already been visited before, in a
pre-order traversal of the tree. This way, we can be sure that by following such an
additional pointer, the low-level algorithm discovers a marked node and returns.
We formalize this property by a predicate that traverses a tree recursively and
checks that additional pointers only point to a set of allowed external references
extrefs. When descending into the left subtree, we add the root to this set, and
when descending into the right subtree, the root and the nodes of the left subtree.

consts
t-marked-ext :: ((′r , ′v) addr tag , ′r ref) tree ⇒ ′r set ⇒ bool

17

primrec
t-marked-ext (Leaf rf) extrefs = (case rf of Null ⇒ True | Ref r ⇒ r ∈ extrefs)
t-marked-ext (Node n l r) extrefs =

(t-marked-ext l (insert (addr-of-tag n) extrefs)
∧ t-marked-ext r ((insert (addr-of-tag n) extrefs) ∪ set (reach l)))

There is a similar property p-marked-ext, less inspiring, for p trees, which we
give here for completeness:

consts
reach-visited :: ((′r , ′v) addr tag , ′r ref) tree ⇒ ′r list

primrec
reach-visited (Leaf rf) = []
reach-visited (Node n l r) = (addr-of-tag n) #

(case n of (Tag m d v) ⇒
(case d of

L ⇒ reach-visited l
| R ⇒ reach l @ reach-visited r))

consts
p-marked-ext :: ((′r , ′v) addr tag , ′r ref) tree ⇒ ′r set ⇒ bool

primrec
p-marked-ext (Leaf rf) extrefs = (rf = Null)
p-marked-ext (Node n l r) extrefs =

(case n of (Tag m d v) ⇒
(case d of

L ⇒ (p-marked-ext l ((insert (addr-of-tag n) extrefs) ∪ set (reach r))
∧ t-marked-ext r ((insert (addr-of-tag n) extrefs) ∪ set (reach-visited l)))

| R ⇒ (t-marked-ext l (insert (addr-of-tag n) (set (reach-visited r)))
∧ p-marked-ext r ((insert (addr-of-tag n) extrefs) ∪ set (reach l)))))

Let us insist on this point, because it is essential for the method advocated in
this paper: Intuitively, we partition the state space into disjoint areas of addresses
with their spanning trees, as depicted in Figure 6. The properties of these areas
are described by the predicates t-marked-ext and p-marked-ext. Pointers may
reach from one area into another area (the extrefs of the predicates). For the
proof, it will be necessary to identify characteristic properties of these external
references.

One of these is that all external references of a t tree only point to nodes
marked as true. To prepare the ground, the following function gives us all the
references of nodes that have a given mark:

consts marked-as-in :: bool ⇒ ((′r , ′v) addr tag , ′l) tree ⇒ ′r set
primrec

marked-as-in m (Leaf rf) = {}
marked-as-in m (Node n l r) =

(if (nmark n) = m then {(addr-of-tag n)} else {})
∪ marked-as-in m l ∪ marked-as-in m r

18

t

p

Fig. 6. Partitioning of trees

We can now show some invariants of function sw-body that will be instrumen-
tal for the correctness proof of Section 6. For example, if all external references of
t only point to marked nodes of p, then this will also be the case after execution
of sw-body :

lemma marked-ext-pres-t-marked-ext :
[[(p ′, t ′) = sw-body (p, t); ¬ sw-term (p, t);
distinct (reach p @ reach t);
p-marked-ext p (set (reach t));
t-marked-ext t (set (reach-visited p));
t-marked m t ;
p-marked p;
(set (reach-visited p)) ⊆ marked-as-in True p]]

=⇒ t-marked-ext t ′ (set (reach-visited p ′))

To conclude this section, let us remark that the refinement of trees by in-
stantiation of the leaf node type described here allows us to state some more
invariants, but of course, the correctness properties of the original algorithm of
Section 2 remain valid.

6 Implementation for Trees with Pointers

More surprisingly, we will now see that the low-level traversal algorithm of Sec-
tion 4 also works for all graphs - without the slightest modification of the al-
gorithm! The main justification has already been given in the previous section:
There is essentially only one situation when the “pure tree” version and the “tree
with pointers” version of the algorithm differ:

– In the high-level “pure tree” version, after a sequence of push operations, the
t tree will become a leaf. This will be the case exactly when in the low-level
version of the algorithm, the correspoding t pointer will become Null.

– In the high-level “tree with pointers” version, after some while, the t tree
will also become a leaf, but in the low-level version, the t pointer might have
moved on to a non-Null node. If the underlying spanning tree is well-formed

19

(in the sense of t-marked-ext), the t will point to a marked node, so that the
algorithm initiates backtracking in both cases.

We achieve this by taking into account the information contained in leaf
nodes. Instead of the function addr-of of Section 4, we now parameterize our
development with the function addr-or-ptr that also returns the references con-
tained in leaf nodes:

consts
addr-or-ptr ::((′r , ′v) addr tag , ′r ref) tree ⇒ ′r ref

primrec
addr-or-ptr (Leaf rf) = rf
addr-or-ptr (Node n l r) = Ref (addr-of-tag n)

We can now prove an extension of the lemma sw-impl-term-sw-term of Sec-
tion 4.3 establishing the correspondence of the high-level and low-level termi-
nation conditions described above. What is new are additional preconditions
that we have motivated in Section 5: the p tree is p-marked-ext, with external
references pointing to the t tree, and inversely for the t tree:

lemma sw-impl-term-sw-term-ext :
[[config-alloc-in-state addr-or-ptr (p, t) (ref-pt , s);
p-marked-ext p (set (reach t));
t-marked-ext t (set (reach-visited p))]]
=⇒ runSR (sw-impl-term ref-pt) s = sw-term (p, t)

The proof for the simulation lemma now proceeds essentially along the same
lines as the proof seen for lemma sw-impl-body-config-alloc.

lemma sw-impl-body-config-alloc-ext :
[[config-alloc-in-state addr-or-ptr (p, t) (vs, s);
t-marked m t ; p-marked p; ¬ (runSR (sw-impl-term vs) s);
distinct (reach p @ reach t);

p-marked-ext p (set (reach t));
t-marked-ext t (set (reach-visited p));
(set (reach-visited p)) ⊆ marked-as-in True p]]
=⇒
config-alloc-in-state addr-or-ptr (sw-body (p, t)) (runST (sw-impl-body vs) s)

Now, the proof proceeds along the lines of the proof discussed in Section 4,
yielding finally a preservation theorem for configurations:

lemma impl-correct-ext :
(∃ m. t-marked m t) ∧ p-marked p ∧ distinct (reach p @ reach t)
∧ p-marked-ext p (set (reach t)) ∧ t-marked-ext t (set (reach-visited p))
∧ (set (reach-visited p)) ⊆ marked-as-in True p
∧ config-alloc-in-state addr-or-ptr (p, t) (vs, s)
=⇒ config-alloc-in-state addr-or-ptr (sw-tr (p, t)) (runST (sw-impl-tr vs) s)

If we start our computation with an empty p tree, some of the preconditions
of this lemma vanish, as seen by a simple expansion of definitions. A tidier
version of our result is then:

20

theorem impl-correct-tidied :
[[t-marked m t ; t-marked-ext t {}; distinct (reach t);
tree-alloc-in-state addr-or-ptr t s;
sw-tr (Leaf Null , t) = (p ′, t ′);
(runST (sw-impl-tr (Null , addr-or-ptr t)) s) = ((p-ptr ′, t-ptr ′), s ′)]]

=⇒ tree-alloc-in-state addr-or-ptr t ′ s ′ ∧ t-ptr ′ = (addr-or-ptr t ′)

7 Related Work

Schorr-Waite: At the time of writing of this report, a search on Google Scholar
with the keyword “Schorr-Waite” gives about 380 results. Even if some of them
are apparently duplicates or only loosely related to the topic, one can assess the
interest caused by the original publication [SW67].

Earlier work [BP82,Bir01,Top79,War96] often uses a transformational ap-
proach to arrive at an executable program, starting with a high-level rela-
tional specification. The first termination proof seems to have been published
in [YD77]: Three termination schemas are given, two of which are lexicographic
orders (used for simpler variants of the algorithm), one is quite complex, and its
well-foundedness proof, even though not obvious, is dismissed as “routine”. Our
termination argument, substantially different, is a lexicographic combination of
three simple measures on trees.

As for mechanization of the proofs, there is the usual divide between inter-
active theorem proving (that we follow) and fully automated methods that are
usually incomplete or cover only very specific correctness properties. On this line,
[GM07] carry out a verification by translation of the algorithm to PlusCal and
model checking for graphs of bounded size. [LRS06] use the tool TLVA, based on
shape analysis. The procedure is not entirely “automatic”, as it requires feeding
TLVA with appropriate state relations. Even then, the analysis runs for several
hours. (By means of comparison, our Isabelle proof script is processed in the
order of two minutes.) An advantage of TLVA is that it directly works on C
code. It is not quite clear which limitations are effectively imposed on the kind
of graph structure (acyclic?) that has been verified.

More recently, there has been some interest in proofs using interactive theo-
rem provers, sparked by Bornat’s proof using his Jape prover [Bor00]. This work
has later been shortened considerably in Isabelle [MN05], using a “split heap”
representation. The proof is directly carried out on an imperative algorithm em-
bedded in the Isabelle system, without any refinement steps. Similar in spirit
are proofs using the Caduceus platform [HM05] for a C implementation (also
proving termination of the algorithm) and the KeY system [Bub07] for a Java
implementation.

Contrasting with this, a proof with the B method [Abr03] follows the refine-
ment tradition of program development, using a total of 8 refinement steps to
arrive from an abstract specification of graphs (defined as relation) at an algo-
rithm. In terms of properties shown, this is certainly one of the most complete
developments, but some doubts remain: The algorithm is claimed to terminate,
but no explicit or implicit statement of finiteness of the graph is made. Note

21

that in our development, the surjective embedding of inductively defined trees
ensures finiteness of the underlying graph.

Representation of memory and imperative programs:
There are two ways to obtain verified executable code: verify written code

by abstracting it or generate it from abstract specification.
Haskabelle [RH09] allows to import Haskell code into Isabelle, which can

then be used as specification, implementation or intermediate refinement like in
[KDE09]. Why/Krakatoa [FM07] is a general framework to generate proof obli-
gations from annotated imperative programs like Java or C into proof assistants
like Coq, PVS or Isabelle.

As to the second way, some proof assistants like Coq and Isabelle/HOL are
able to generate code from specification in a process called extraction.

The theory Imperative HOL [BKH+08] takes advantage of Isabelle’s extrac-
tion and already implements a state-transformer monad with syntax transfor-
mations, and code extraction/generation. In this version, the heap is first-order
polymorphic, while ours is parameterized, allowing but also needing further in-
stantiations in each case. So one can add any value of one of previously chosen
types in our heap, while one can add any value of first-order (or higher but fixed
in later versions) type whenever one wants to in the heap of Imperative HOL.

This polymorphism is obtained by encoding all first-order values as natural
numbers. References are also natural numbers with an additional phantom type
used to retrieve data from the heap. Indeed, using type reflection, this type is
transformed to a value to be given as argument to the heap being a function
from natural numbers (addresses) and type representations to natural numbers
(values).

There are also other differences:

– We do not have exceptions, our primitives being instead underspecified, for
example, in the case of access to null or non-allocated references, because
allocation is not managed.

– We use simplification – rewriting – instead of relational reasoning. We have
defined rules simplifying execution of primitives with runST and runSR
functions.

– We have a type distinction between state-reader and state-transformer mon-
ads allowing to use a nicer syntax and to have static simplifications, as
state-readers do not modify the state.

The Ynot project [NMS+08] also uses monads to specify and generate im-
perative programs within the Coq proof assistant. They have developed a sepa-
ration logic allowing to simplify reasoning about the heap, while pre- and post-
conditions are directly available in the type of computations.

We used a simple memory model as a total function from natural numbers to
values which was sufficient in our case, but managing allocation could become
hard. Several memory models are compared in [SW09] which then gives a solution
combining their advantages which could be interesting.

Reasoning about pointer structures:

22

The idea to use spanning trees with additional pointers to reason about
graph structures is present in the Pale system [MS01], designed to prove the
preservation of structural invariants of graphs. Given a graph transformation
program, a weakest precondition calculus extracts formulae in monadic second
order logic and feeds them to a specialized decision procedure.

Separation logic [ORY01] has recently been advocated as a method of rea-
soning about pointer programs. The idea is to partition the state into disjoint
heap fragments that are manipulated by different code fragments that can be
composed modularly. One of the earliest case studies is indeed a proof of the
Schorr-Waite algorithm [Yan01]. The proof is not mechanized, but the author
has later taken up the example [LYY05] to apply an analysis based on shape
grammars. It seems that this analysis only works for trees, and it is not quite
clear which properties have effectively been proved.

An interesting recent development is a “tree update logic” [CGZ05,GW09]
that combines separation logic with more abstract reasoning about trees: Trees
can be decomposed into partial trees with holes, giving rise to separating con-
nectors on a structural level. Details still have to be explored.

8 Conclusions

We have presented a correctness proof of the Schorr-Waite algorithm, starting
from a high-level algorithm operating on inductively defined trees (Section 2)
to which we add pointers to obtain genuine graphs (Section 5). The low-level
algorithm introduced in Section 4 has been proved correct in Section 6 by a
simulation argument. The proof in Section 4 for the “pure tree” version of the
high-level algorithm has been discussed in more detail for didactic reasons, but
is as such immaterial for the full proof presented in Section 6.

The Isabelle proof script is about 1000 lines long and thus compares favorably
with previous mechanized proofs of Schorr-Waite, in particular in view of the
fact that the termination of the algorithm and structure preservation of the
graph after marking have been addressed. It is written in a plain style without
particular acrobatics and can presumably be adapted to similar proof assistants
without great effort.

Some questions may remain open. The sceptical reader might not be in-
clined to “believe” some preconditions of our main theorems, for example the
precondition tree-alloc-in-state addr-or-ptr t s of theorem impl-correct-tidied in
Section 6. Seen “top-down”, the predicate hardly poses a problem: given a tree
t with additional pointers, it should not be difficult to lay it out in memory s,
by following the recursive procedure embodied by tree-alloc-in-state.

The “bottom-up” view is more problematic: given an arbitrary graph in
s, can we construct a spanning tree t with tree-alloc-in-state addr-or-ptr t s
which in addition satisfies t-marked-ext t {} (another precondition of theorem
impl-correct-tidied)? We can argue, informally, that also this view can be accom-
modated: Construct t by a traversal of the graph structure and accumulate the
visited nodes in a set which corresponds to the second argument of t-marked-ext

23

(note that this auxiliary algorithm is just a conceptual device: a constructive
existence proof of t and by no means required for the execution of the SW algo-
rithm). A formalization of this sketch could be envisaged, but it would require
introducing additional notions (e.g. finiteness of the set of nodes reachable from
the starting point of the graph in s) that would hardly contribute to the clarity
of the statement.

We think that some essential concepts of our approach (representation of
a graph by spanning trees with additional pointers, refinement to imperative
programs in monadic style, partitioning of the heap space into subgraphs) can
be adapted to other traditional graph algorithms: Often, the underlying structure
of interest is indeed tree-shaped, whereas pointers are just used for optimization.

The present paper is primarily a case study, so there are still some rough
edges: the representation of our imperative programs has to be refined, with the
aim of allowing their compilation to standard programming languages like C or
Java. Similarly, we hope to develop patterns that make refinement proofs easier
and to partly automate them.

References

[Abr03] Jean-Raymond Abrial. Event based sequential program development: Ap-
plication to constructing a pointer program. In FME, pages 51–74, 2003.

[Bir01] Richard S. Bird. Functional pearl: Unfolding pointer algorithms. Journal
of Functional Programming, 11:2001, 2001.

[BKH+08] Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkök, and
John Matthews. Imperative Functional Programming with Isabelle/HOL. In
TPHOLs ’08: Proceedings of the 21st International Conference on Theorem
Proving in Higher Order Logics, 2008.

[Bor00] Richard Bornat. Proving pointer programs in Hoare logic, 2000.
[BP82] Manfred Broy and Peter Pepper. Combining algebraic and algorithmic rea-

soning: An approach to the Schorr-Waite algorithm. ACM Trans. Program.
Lang. Syst., 4:362–381, 1982.

[Bub07] Richard Bubel. The Schorr-Waite-Algorithm. In Bernhard Beckert, Reiner
Hähnle, and Peter H. Schmitt, editors, Verification of Object-Oriented Soft-
ware: The KeY Approach, LNCS 4334, chapter 15, pages 569–587. Springer
Verlag, 2007.

[CGZ05] Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Context logic and
tree update. In Proc. POPL’05, 2005.

[FM07] Jean-Christophe Filliâtre and Claude Marché. The
Why/Krakatoa/Caduceus platform for deductive program verification.
In CAV, pages 173–177. Springer, 2007.

[GM07] Miguel Garcia and Ralf Möller. Certification of Transformations Algorithms
in Model-driven Software Development. In Software Engineering 2007, 2007.

[GW09] Philippa Gardner and Mark Wheelhouse. Small specifications for tree up-
date. In Proc. WSFM, 2009.

[HM05] Thierry Hubert and Claude Marché. A case study of C source code verifi-
cation: the Schorr-Waite algorithm. In In 3rd IEEE Intl. Conf. SEFM’05,
2005.

24

[KDE09] Gerwin Klein, Philip Derrin, and Kevin Elphinstone. Experience report: sel4
— formally verifying a high-performance microkernel. In Proc. 2009 ACM
SIGPLAN International Conference on Functional Programming (ICFP),
2009.

[LRS06] Alexey Loginov, Thomas Reps, and Mooly Sagiv. Automated verification
of the Deutsch-Schorr-Waite tree-traversal algorithm. In Proc. of SAS-06
Sagiv, M.; Reps, T.; and, 2006.

[LYY05] Oukseh Lee, Hongseok Yang, and Kwangkeun Yi. Automatic verification of
pointer programs using grammar-based shape analysis. In In ESOP, 2005.

[MN05] Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order
logic. Information and Computation, 199:200–227, 2005.

[MS01] Anders Møller and Michael I. Schwartzbach. The pointer assertion logic
engine. In PLDI, pages 221–231, 2001.

[NMS+08] Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau,
and Lars Birkedal. Ynot: Reasoning with the awkward squad. In ICFP
’08: Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming, September 2008.

[NPW02] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL. A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer Verlag, 2002.

[ORY01] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about
programs that alter data structures. In Proceedings of CSL’01, volume 2142
of LNCS, pages 1–19. Springer, 2001.

[RH09] Tobias Rittweiler and Florian Haftmann. Haskabelle – converting Haskell
source files to Isabelle/HOL theories, 2009. http://www.cl.cam.ac.uk/

research/hvg/Isabelle/haskabelle.html.
[SW67] H. Schorr and W. Waite. An efficient machine independent procedure for

garbage collection in various list structures. Communications of the ACM,
10:501–506, 1967.

[SW09] Norbert Schirmer and Makarius Wenzel. State spaces — the locale way.
Electron. Notes Theor. Comput. Sci., 254:161–179, 2009.

[Top79] R. W. Topor. The correctness of the Schorr-Waite list marking algorithm.
Acta Informatica, 11:211–221, 1979.

[War96] Martin Ward. Derivation of data intensive algorithms by formal transfor-
mation –the Schorr-Waite graph marking algorithm. IEEE Transactions on
Software Engineering, 22:665–686, 1996.

[Yan01] Hongseok Yang. An example of local reasoning in bi pointer logic: the Schorr-
Waite graph marking algorithm. In Proceedings of the SPACE Workshop,
2001.

[YD77] Lawrence Yelowitz and Arthur G. Duncan. Abstractions, instantiations,
and proofs of marking algorithms. In Proceedings of the 1977 symposium on
Artificial intelligence and programming languages, pages 13–21, New York,
NY, USA, 1977. ACM.

25

