
Proving preservation of transitivity invariants in
model transformations

Christian Percebois, Martin Strecker, Hanh Nhi Tran

IRIT (Institut de Recherche en Informatique de Toulouse)
Université de Toulouse, France

{Christian.Percebois | Martin.Strecker | Hanh-Nhi.Tran}@irit.fr ?

Abstract. This paper develops methods to reason about graph trans-
formations, and in particular to show that transitivity and reachability
invariants are preserved during transformations. In our approach, graph
transformations consist of a pattern defining an applicability condition,
and an operational description of the desired transformation. Whereas
previous work was restricted to Boolean combinations of arc expressions
as patterns, we extend the approach to patterns containing transitive clo-
sure operations, which implicitly denote an unbounded number of nodes.
We show how these can be internalized into a finite pattern graph so that
model checking techniques can be applied for verification.

Keywords: Model-Driven Engineering; Graph Transformations; For-
mal Methods; Verification

1 Introduction

1.1 Aims and Contributions

Graph transformations have numerous applications in computer science. They
can be used, among others, in Model Driven Engineering (MDE); as compiler
transformations; as a high-level view of pointer-manipulating programs; and for
modeling security properties of an information system.

Many of these transformations can be considered safety critical and therefore
have to satisfy stringent correctness requirements. In some cases, it might be suf-
ficient to carry out an a posteriori verification and to check that the outcome of a
transformation fulfills all requirements. This is in particular possible if the graph
is small enough, and reaching an error state is not problematic. For example,
recognizing that a refactoring step in MDE has failed is itself not catastrophic.
However, a network management system or an access control system described
by a graph transformation should work according to their specification, and
detecting a malfunctioning after it has occurred might already be too late.

The work described in this paper adopts a theorem proving approach to
demonstrate the correctness of transformations. Our aim is to develop methods

? Part of this research has been supported by the Climt project (ANR-11-BS02-016).

allowing to prove that a transformation rule is correct when applied to an ar-
bitrary graph, provided certain applicability conditions are met. Here, “correct-
ness” means that the transformation establishes certain structural conditions,
for example cardinality restrictions. Properties that we especially focus upon in
this paper are conditions of connectivity respectively separation: does a trans-
formation ensure that two nodes remain connected (respectively unconnected)
by a sequence of arcs?

This paper homogenizes and continues the strands developed by the authors
in previous papers [24,25], in which we have shown that reasoning about a trans-
formation applied to an arbitrary graph can be essentially reduced to reasoning
about a bounded portion of the graph, namely the image of the transformation
rule in the target graph. In this paper, we extend this approach and make the
following contributions:

– We introduce transitive closure patterns in the rules’ applicability condi-
tions. These express that the rule can be applied provided that two nodes
are connected via the transitive closure of an arc relation. This kind of ap-
plicability pattern is interesting in its own right; there are only few graph
transformation engines that include it in their transformation language (see
Section 1.2).

– We show that this pattern, even though referring to a possibly unbounded
number of nodes, can be reduced to a verification on simple arcs, thus al-
lowing for automation also in this case.

– Unfortunately, (positive) transitive closure patterns are not always sufficient
as applicability conditions of rules; one sometimes also has to stipulate the
non-existence of a connection in the underlying graph. We illustrate this
situation with some example. Reasoning about these negative connectivity
patterns turns out to be much more difficult, and we cannot give a complete
calculus. We present however some reasoning patterns (associated to the
graph rewriting rules) that allow a simplification in common situations.

The rest of the paper is structured as follows: After a description of related
work (Section 1.2) and some introductory examples (Section 2), we describe the
background of graph transformations as we apply them. We then start with a
rather technical exposition of the reasoning principles underlying our approach
and the way to reduce them to a finite case (Section 3). We conclude with a
perspective on future work.

A note on notation: We have used the interactive proof assistant Isabelle
[18] to model the transformations and to carry out the proofs described in this
paper. As a concession to readability, we describe the transformations in a more
traditional notation, as described further in Section 3.1.

1.2 Related work

Verification of graph transformation mostly uses model-checking technology, see
[2,5,10,26] for some representatives of this approach. A wide-spread approach is

to model concurrent systems as graph transformations and analyze invariants
and reachability problems of these systems. Another emerging interest of this
approach is using graph rewriting for model transformations [1] with appropriate
verification methods [27].

For software verification, model checking is seldom usable, except if the data
structures manipulated by a program are entirely generated by the rules from an
initial graph, such as the red-black trees in [4], or unless abstraction functions
are provided [29].

We notice an important body of work on verification of pointer structures in
imperative programs. Static analyses often use specialized logics for expressing
shapes of pointer structures [13,28]. These logics, as well as frameworks based
on Monadic Second-Order (MSO) logic, often rely essentially on tree structures
with additional pointers, such as the data structure invariants of [17] or the
exact type-checking in XML processing [12]. Our global approach presented in
this article is not restricted to particular shapes of a graph; however, only some
specific forms of proof obligations can be fully automatized. In [7], the authors
investigate MSO for verification of graph properties, but do not address graph
transformations. [3] develop a modal logic for reasoning about graph programs
composed of fine-grained operators for manipulating nodes and redirecting edges.

There are several approaches based on similar ideas as ours on local reason-
ing about data structures: [16] give a decision procedure for a language that is
essentially first-order (and in particular contains no transitive closure), but can
deal with relation composition and integrates support for scalar data types.

Traditionally, algebraic approach has been mostly used for graph rewriting
in order to reason about graph transformations. Recently, there is a tendency
of interpreting graph structures logically [21,19]. The work of Pennemann et al.
[20,11] extracts verification conditions from graph transformation programs and
feeds them into SAT solvers or first-order theorem provers. This approach is en-
tirely automatic and does not allow for human intervention for proving “difficult”
theorems. Moreover, there is no tight coupling between the semantics (expressed
in categorical terms in the cited work) and the proof obligation generator, and
thus there is a dependency on a larger trusted code base.

In [14], the authors propose a new approach to verifying graph transforma-
tions written in Core UnCAL against the specified input/output graph structural
constraints (schemes) in MSO. They first represent both Core UnCAL transfor-
mations and schemes by MSO formulas and then develop an algorithm to reduce
the graph transformation verification problem to the validity of MSO over trees.
This approach is expressive but its efficiency relies on the algorithm to map the
type-annotated Core UnCAL to an MSO-definable graph transduction, and the
decision procedure to verify MSO formula.

The verification problem is also addressed by Zarrin Langari and Richard Tr-
effer [15]. The authors can verify invariants that are expressed by CTL by adding
proposition graphs to transformation rule graphs. Owing to proposition graphs,
the designer can compactly express feature connectivity patterns required during
the transformation. The main result of the paper states a satisfaction condition

theorem for a transformation rule which preserve a property P. Rather similar
to ours, however, the proposed preservation conditions do not permit verifying
the properties of transitivity type which are not present on the right side of
transformation rule.

Da Costa and Ribeiro [8,9] present a logical model for reasoning about graph
transformations that is similar to ours. They propose an encoding of graphs and
rules into relations to enable the use of logic formulas for expressing properties
of a graph grammar’s reachable states. This approach has been implemented
in Event-B [22] by coding individual rules as Event-B machines, such that it
is possible to use the Event-B provers to demonstrate properties of a graph
grammar. However, this work verifies only the property-preservation of a trans-
formation when applied to a concrete graph, whereas ours permits reasoning
about graph transformation applied to an arbitrary graph satisfying some given
preconditions.

Another approach for verification and validation of model transformations is
presented in [6]. This work translates the definition of graph rewriting rules into
an OCL-based representation, which can be combined with constraints defined
in the metamodels. Conditions are then split into those to be checked on the LHS
before rule application and those on the RHS to be checked after rule application.
With this approach, declarative model-to-model transformation rules, compiled
into OCL invariants, are interpreted as constraints that a pair of models should
satisfy in order to synchronize them. This contrasts with the usual approach of
using attribute computations in the rules.

2 Illustrating examples

2.1 Refactoring

c1

c2

c3

c1

c2

c3

Fig. 1: Refactoring: Changing a class hierarchy

The first example, displayed in Figure 1, describes a refactoring step that
might be carried out in an object-oriented programming language. The rule
refers explicitly to three classes c1, c2 and c3. The solid arrow −→ is the direct
subclass relation r, the dashed arrow − → the inheritance relation r∗ (reflexive-
transitive closure of subclass relation). The refactoring step consists in moving

c1 below c2, by cutting the direct subclass relation between c1 and c3 and in-
troducing one between c1 and c2. The application context might require that
this refactoring only extends, but does not restrict the previous inheritance re-
lation, for example in order to avoid that method calls become undefined. If r
is the subclass relation before and r′ the subclass relation after refactoring, we
can express this preservation property more formally by the requirement that
r∗ ⊆ (r′)∗.

The delicate point about this transformation is the pattern c2− → c3 in the
rule’s left-hand side (LHS), because it might refer to an arbitrary number of
intermediate nodes that are not explicitly mentioned in the rule. Indeed, the
attentive reader will have realized that the rule as given in Figure 1 does not
allow the intended correctness statement to be proved. We will come back to
this point later, show which additional condition is required to repair the rule
and how we can reduce reasoning about the transitive closure relation r∗ in the
rule’s LHS to reasoning about the direct edge relation r.

2.2 Access Control

i s

f

i s

f

Fig. 2: Access control

The example displayed in Figure 2 depicts a scenario of access control: The
node named s is a server that can host several files. We are about to add a new
file f to the server. The server is not accessible to intruder i. We want to make
sure that, after the transformation, the file f does not become accessible to i if
it was not accessible before. Several remarks are in order here:

– “Accessibility” is again a transitive relation and is as such depicted by a
dashed line in our figure (and its negation by a small circle). The immediate
access relation (such as: file by server) is displayed by a solid arrow.

– Saying that the server is not accessible to a particular intruder I is not
sufficient – we would rather like to express that it is not accessible to any
intruder. This distinction is difficult to visualize. We have used a dashed box
in Figure 2, but this notation is ad hoc. We are convinced that a textual
notation is more precise – see Section 3.1, where we give the full description.

– It should be noted that in this case, we do not talk about the preservation
of a separability relation, such as (r′)∗ ⊆ r∗, because this is clearly not the
case (f becomes accessible from s). However, a restricted variant is provable,
of the form (r′)∗ . I ⊆ r∗ . I (“reachachable from set I”), where I is the set
of all intruders.

Transfo Refactoring(c1, c2, c3)
Appcond � c1, c3 � ∧(c2 c3)

Action delete-edges:� c1, c3 �
add-edges:� c1, c2 �

(a) original

Transfo Refactoring(c1, c2, c3)
Appcond � c1, c3 � ∧(c2 c3)

∧¬(c2 c1)
Action delete-edges:� c1, c3 �

add-edges:� c1, c2 �

(b) corrected

Fig. 3: Definition of refactoring rule

3 Reductions

3.1 Graphs and Graph Transformation

In its simplest form, a graph gr is a datatype with two functions nodes (yielding
the set of the nodes of the graph) and edges (yielding the set of edges of the
graph). An edge is just an ordered pair of nodes. The node set of a graph is
assumed to be finite (and, consequently, is the edge set).

A graph transformation rule is characterized by the following elements:

– A name, followed by a list of parameters that designate nodes of the graph
that the rule is applied to.

– An applicability condition, having as only free variables the rule’s parame-
ters. This condition is a path formula whose structure will be defined more
precisely below.

– An action describing which nodes and edges are to be deleted respectively
added during the transformation.

We could introduce more complex notions of graph, for example graphs with
typed nodes and edges, but we refrain from doing it here, because these concerns
are orthogonal to the questions dealt with in the following.

The example transformation of Figure 1 is defined in Figure 3a as a trans-
formation applicable to three nodes c1, c2 and c3. The applicability condition
is that there is an edge between c1 and c3 (written as � c1, c3 �) and a path
between c2 and c3 (written as c2 c3). The action is to delete the arc between
c1 and c3 and to add one between c1 and c2.

A more precise definition of path expression pe and path formula pf is as
follows:

pe ::=� n1, n2 � – edge between nodes n1 and n2

| n1 n2 – path between nodes n1 and n2

pf ::= pe – elementary path formula
| ¬pf
| pf ∧ pf
| ∀n.pf

The use of quantification is illustrated in Figure 4. The rule has only two free
variables, s and f . The precondition expresses that there is no intruder i that
can access node s.

Transfo AC(s, f)
Appcond ∀i.¬(i s)
Action add-edges:� s, f �

Fig. 4: Definition of access control rule

Before we can sketch what it means to apply a rule to a target graph gr, we
need the notion of morphism which maps the variables of the rule (thus, c1, c2
and c3 in the example of Figure 3) to nodes of the target graph. The morphism
of Figure 5 is the mapping [c1 7→ n1, c2 7→ n2, c3 7→ n3]. Quite naturally, there
are nodes of the graph (such as n4) that are not in the image of the morphism.

c1

c2

c3

c1

c2

c3

n1 n2

n3

n4 n1

n2

n3

n4

Fig. 5: Refactoring: Application of the rule

Given a graph gr, a graph morphism gm and a path formula pf , the predicate
path-form-interp defines what it means for pf to be satisfied under gm in gr.
The definition is the standard definition of an interpretation in logic, and we
omit it here.

The application apply-graphtrans-rel of a graph transformation under a
morphism performs the modifications specified in the “action” part of the trans-
formation rule gt, by adding respectively deleting nodes and edges. The precise
definition is technically more complex (see [23] for details) because it has to take
deletion of dangling edges into account.

With these preliminaries, we can define apply-transfo-rel, the relation be-
tween a graph gr and the graph gr′ resulting from applying the graph transfor-
mation gt to gr.

∃gm.path-form-interp gr gm (appcond gt) ∧ apply-graphtrans-rel gt gr gr′

apply-transfo-rel gt gr gr′

Please note that this definition is entirely descriptive and not executable,
because it imposes no choice as to which morphism gm (among several applicable
morphisms) is selected.

The properties that we want to prove are properties of preservation of reach-
ability or non-reachability (separation), of the following style:

– global preservation, of the form (edges gr)∗ ⊆ (edges gr′)∗ (reachability) or
(edges gr′)∗ ⊆ (edges gr)∗ (separation).

– relativized preservation of reachability from a set: (edges gr)∗.A ⊆ (edges gr′)∗.
A, where R .A = {b.∃a ∈ A.(a, b) ∈ R} is the image of set A under relation
R; and similarily for relativized separation.

3.2 Local Reasoning

A fundamental question underlying our approach is: is it possible to reason about
a graph transformation by just taking into account the nodes appearing in the
rule itself, without having to consider other nodes that might exist in the graph
where the rule is applied?

In our previous work [24], we have shown that this is so, provided we restrict
the applicability conditions to path formulae that are essentially Boolean com-
binations of simple edge relations. We will briefly recapitulate the approach in
Section 3.4.

The situation becomes more complex in the presence of transitive closure, as
in the relation c2− → c3 in Figure 5. As one can see in the example, the nodes
in the image of the graph morphims, namely n2 and n3, are connected by a path
running through node n4, which is outside the image of the rule in the graph
(the dark-shaded area in the lower part of Figure 5). And indeed, application of
the rule leads to an incorrect result, in the sense that n1 is no more connected
to n3 after application of the rule, contrary to the intention of the rule.

Specifically for this example, a solution is to forbid a path between c2 and
c1, as expressed by the following modification of the applicability condition (see
Figure 3b for the corrected version of the rule):

Appcond� c1, c3 � ∧(c2 c3) ∧ ¬(c2 c1)

Unfortunately, the negated path condition ¬(c2 c1) is more difficult to
deal with than the positive one, c2 c3. In the following, we will outline

– how to eliminate positive path conditions (see Section 3.3): the idea is to
replace a path, such as c2 c3, by an edge, such as � c2, c3 �, and thus
to reduce reasoning about paths to reasoning about edges only.

– where negative path conditions come into play during elimination of positive
path conditions.

– how to reason about graph transformations after these reductions (see Sec-
tion 3.4).

We recall that we are mainly interested in problems of preservation of reach-
ability of the form (edges gr)∗ ⊆ (edges gr′)∗. Slightly rewritten, this is the
problem of showing (x, y) ∈ (edges gr)∗ ⇒ (x, y) ∈ (edges gr′)∗, for arbitrary
x, y.

The problem of reachability from a set: (edges gr)∗ . A ⊆ (edges gr′)∗ . A is
essentially the same, with an additional assumption x ∈ A.

Lastly, the problems of preservation of separation are symmetric and can be
handled with identical methods. For these reasons, we only concentrate on the
first kind of problem, namely (x, y) ∈ (edges gr)∗ ⇒ (x, y) ∈ (edges gr′)∗. The
graph gr′ does not appear as such, but as a function of gr.

To simplify the discussion of examples and avoid complicated case distinc-
tions, we furthermore make the (otherwise inessential) assumption that graph
morphisms are injective.
Example of Figure 3: In this example, we have to show (x, y) ∈ {(n1, n2)} ∪
(edges gr − {(n1, n3)})∗, under the preconditions that (x, y) ∈ (edges gr)∗

and (n1, n3) ∈ edges gr and (n2, n3) ∈ (edges gr)∗. After “repairing” the rule
with the strengthened applicability condition, we furthermore have (n2, n1) /∈
(edges gr)∗. ut

3.3 Materialization of paths

The first step in our simplification procedure consists in replacing paths in our
applicability conditions by edges. The following property justifies this step:

Lemma 1 (Path materialization).

(a, b) ∈ R∗ =⇒ ({(a, b)} ∪R)∗ = R∗

and similarly for transitive closure (.)+ instead of reflexive-transitive closure (.)∗.

Proof. We show the property for transitive closure; reflexive-transitive closure is
similar, but slightly more involved. One direction of this equation is trivial, by
monontonicity of transitive closure. The direction ({(a, b)} ∪ R)+ ⊆ R+ can be
seen by expanding (v, w) ∈ ({(a, b)} ∪ R)+ into (v, w) ∈ R+ ∨ (v = a ∨ (v, a) ∈
R+) ∧ (b = w ∨ (b, w) ∈ R+) and then showing (v, w) ∈ R+ by case distinction.

ut

The lemma expresses that a path a b known to exist in a graph (thus:
(a, b) ∈ R+) can be “materialized” by adding the edge� a, b� (thus: ({(a, b)}∪
R), and then taking the closure) without changing the path relation.

In Lemma 1, we have dealt with the addition of a new edge; we need a related
lemma for removal of an edge, as the edge � c1, c3 � in the graph of Figure 3.

Lemma 2 (Deletion of unreachable edge).

(v, a) /∈ R∗ =⇒ ((v, w) ∈ (R− {(a, b)}))∗ ↔ ((v, w) ∈ R∗)

It expresses that if a node a is not reachable from a node v in a graph,
then any edge (a, b) starting from a can be removed without influencing the
reachability from v.

Proof. Again, with monotonicity, the left-to-right direction is trivial.
As to the other direction: define the set reach v R of nodes reachable from

node v under relation R. It is now an easy inductive proof to show that

(v, w) ∈ R∗ =⇒ (v, w) ∈ (R ∩ (reach v R)× (reach v R))∗

Let us now assume that (v, w) ∈ R∗ and use this implication to show
that (v, w) ∈ (R ∩ (reach v R) × (reach v R))∗. It follows that ((v, w) ∈
(R − {(a, b)}))∗, because a /∈ reach v R and therefore (R ∩ (reach v R) ×
(reach v R))∗ ⊆ (R− {(a, b)})∗. ut

Lemma 1 and Lemma 2 are used as conditional rewrite rules in the process of
materialization. The starting point is to show that ({(a, b)}∪R)∗ = R∗, if there
is a path a b in the applicability condition of a rule. During simplification, we
may obtain subgoals of the form (x, y) ∈ R∗, which may be simplified by

– recursive use of Lemma 1,
– recursive use of Lemma 2,
– monotonicity rules of the form (x, y) ∈ R∗ =⇒ (x, y) ∈ S∗, for R ⊆ S.

To ensure termination, we do not try to simplify or to prove goals of the form
(x, y) /∈ R∗. Rather, these negative path conditions have to be directly given as
hypotheses. We emphasize that this is a heuristic process which is sound (we
do not derive wrong conclusions) but not complete (our proof may fail even for
valid proof goals).

With these observations, we can make some progress on our example.
Example of Figure 3: Under the preconditions enumerated before, we have to
show (x, y) ∈ ({(n1, n2)} ∪ (edges gr − {(n1, n3)}))∗.

We now materialized the path (n2, n3), thus showing that this goal is equiv-
alent to (x, y) ∈ ({(n2, n3), (n1, n2)} ∪ (edges gr − {(n1, n3)}))∗; this proof goal
can then be tackled with the methods of Section 3.4.

Indeed,

– ({(n2, n3), (n1, n2)} ∪ (edges gr − {(n1, n3)}))∗ = ({(n1, n2)} ∪ (edges gr −
{(n1, n3)}))∗ (by Lemma 1) because (n2, n3) ∈ ({(n1, n2)} ∪ (edges gr −
{(n1, n3)}))∗

– (n2, n3) ∈ ({(n1, n2)}∪(edges gr−{(n1, n3)}))∗ because (n2, n3) ∈ (edges gr−
{(n1, n3)})∗ (by monotonicity of reflexive-transitive closure)

– (n2, n3) ∈ (edges gr − {(n1, n3)})∗ ↔ (n2, n3) ∈ (edges gr) (by Lemma 2)
because (n2, n1) /∈ (edges gr)∗ (by assumption).

ut

3.4 Graph Decomposition

To make the paper self-contained, we mention the main steps of the further
simplification procedure. A more technical development with details and justifi-
cations can be found in [23]. After the manipulations of Section 3.3, we are left
with a goal of the form

(x, y) ∈ R∗ =⇒ (x, y) ∈ (R′)∗

where R is the edge relation edges gr of the original graph and R′ is the edge
relation edges gr′ of the transformed graph, possibly after addition of some edges
that materialize paths.

When reasoning about a graph transformation, we do not know the nodes
and edges that exist in the graph the rule is applied to. However, if the rules
only have preconditions that are a Boolean combination of edge relations, it is
sufficient to split the graph into an interior (the subgraph which lies entirely
within the image of the rule’s free variables under the graph morphism; the dark-
shaded part in Figure 1) and an exterior (the rest of the graph; light-shaded in
Figure 1). The exterior of the graph can henceforth be disregarded; it is sufficient
to verify the desired property on the interior of the graph, which can be done by a
Boolean satisfiability check or, in the simplest case, by a symbolic computation.
Example of Figure 3: In the example proof, the remaining goal is to show

(x, y) ∈ (edges gr)∗ =⇒ (x, y) ∈ ({(n2, n3), (n1, n2)} ∪ (edges gr − {(n1, n3)}))∗

To get rid of the abstract set edges gr, we perform the above-mentioned split,
which leaves us with the goal

{(n1, n3)}∗ ⊆ {(n2, n3), (n1, n2)}∗

which can be verified by a simple symbolic computation. ut

4 Conclusions

The present paper tries to make several points: Expressive transformation pat-
terns (such as transitive closure) that go beyond what is commonly used in graph
rewriting systems are useful in some application domains, and they are amenable
to a formal analysis. In this sense, we have presented simplification strategies
that reduce reasoning about paths to reasoning about edges (Section 3.3). These
strategies can be understood as preprocessing steps carried out before verification
procedures applicable to more restricted graph transformations (Section 3.4).

The simplification method we have presented is sound, but not complete.
Apart from that, our approach is currently geared towards particular preserva-
tion properties (reachability and separation). Dealing with transitive closure is
a difficult problem that quickly becomes undecidable [13]. We therefore think
that our heuristic approach is a good compromise that we try to extend to other

common reasoning patterns. Apart from that, we will also investigate more sys-
tematic sound and complete procedures, but for weaker logics.

As witnessed by our examples, it is difficult to get rules right; in particu-
lar, this means that some preconditions covering unsuspected special cases are
usually missing. Another interesting line of research is therefore to help devel-
opers of rules find the right applicability patterns for transformations that are
supposed to satisfy particular correctness conditions.

References

1. Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer. Henshin: Advanced concepts and tools for in-place EMF model trans-
formations. In Proceedings of MoDELS’10, volume 6394 of LNCS. Springer, 2010.

2. Márk Asztalos, Péter Ekler, László Lengyel, Tihamer Levendovszky, Gergely Mezei,
and Tamás Mészáros. Automated verification by declarative description of graph
rewriting-based model transformations. ECEASST, 42, 2011.

3. Philippe Balbiani, Rachid Echahed, and Andreas Herzig. A dynamic logic for
termgraph rewriting. In Hartmut Ehrig, Arend Rensink, Grzegorz Rozenberg, and
Andy Schürr, editors, Graph Transformations, volume 6372 of Lecture Notes in
Computer Science, pages 59–74. Springer Berlin / Heidelberg, 2010.

4. Paolo Baldan, Andrea Corradini, Javier Esparza, Tobias Heindel, Barbara König,
and Vitali Kozioura. Verifying red-black trees. In Proc. of COncurrent Systems
with dynaMIC Allocated Heaps, COSMICAH ’05, 2005. Proceedings available as
report RR-05-04 (Queen Mary, University of London).

5. Paolo Baldan, Andrea Corradini, and Barbara König. A framework for the verifica-
tion of infinite-state graph transformation systems. Information and Computation,
206:869–907, 2008.

6. Jordi Cabot, Robert Clarisó, Esther Guerra, and Juan de Lara. Verification and
validation of declarative model-to-model transformations through invariants. Jour-
nal of Systems and Software, 83(2):283–302, 2010.

7. Bruno Courcelle and Irène Durand, A. Verifying monadic second order graph
properties with tree automata. In Christophe Rhodes, editor, Proceedings of the
3rd European Lisp Symposium, pages 7–21, Lisboa, France, May 2010. 15 pages.

8. Simone André da Costa and Leila Ribeiro. Formal verification of graph grammars
using mathematical induction. Electronic Notes in Theoretical Computer Science,
240(0):43 – 60, 2009. Proceedings of the Eleventh Brazilian Symposium on Formal
Methods (SBMF 2008).

9. Simone André da Costa and Leila Ribeiro. Verification of graph grammars using
a logical approach. Science of Computer Programming, 77(4):480 – 504, 2012.
Brazilian Symposium on Formal Methods (SBMF 2008).

10. Amir Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zambon, and Maria
Zimakova. Modelling and analysis using GROOVE. International Journal on
Software Tools for Technology Transfer (STTT), 14:15–40, 2012.

11. Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level transforma-
tion systems relative to nested conditions. Mathematical Structures in Computer
Science, 19(02):245–296, 2009.

12. Haruo Hosoya. XML processing - The Tree-Automata Approach. Cambridge Uni-
versity Press, 2011.

13. Neil Immerman, Alex Rabinovich, Tom Reps, Mooly Sagiv, and Greta Yorsh. The
boundary between decidability and undecidability for transitive-closure logics. In
Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic, vol-
ume 3210 of Lecture Notes in Computer Science, pages 160–174. Springer Berlin /
Heidelberg, 2004.

14. Kazuhiro Inaba, Soichiro Hidaka, Zhenjiang Hu, Hiroyuki Kato, and Keisuke
Nakano. Graph-transformation verification using monadic second-order logic. In
Proceeding of the 13th International ACM SIGPLAN Symposium on Symposium
on Principles and Practice of Declarative Programming. ACM Press, July 2011.

15. Zarrin Langari and Richard Trefler. Application of graph transformation in veri-
fication of dynamic systems. In Proceeding of the 7th International Conference on
Integrated Formal Methods, 2009.

16. Scott McPeak and George Necula. Data structure specifications via local equal-
ity axioms. In Kousha Etessami and Sriram Rajamani, editors, Computer Aided
Verification, volume 3576 of Lecture Notes in Computer Science, pages 476–490.
Springer Berlin / Heidelberg, 2005.

17. Anders Møller and Michael I. Schwartzbach. The pointer assertion logic engine.
In PLDI, pages 221–231, 2001.

18. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL. A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, 2002.

19. Fernando Orejas, Hartmut Ehrig, and Ulrike Prange. Reasoning with graph con-
straints. Formal Aspects of Computing, 22:385–422, 2010.

20. Karl-Heinz Pennemann. Resolution-like theorem proving for high-level conditions.
In Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, edi-
tors, Graph Transformations, volume 5214 of Lecture Notes in Computer Science,
pages 289–304. Springer Berlin / Heidelberg, 2008.

21. Arend Rensink. The joys of graph transformation. Nieuwsbrief van de Nederlandse
Vereniging voor Theoretische Informatica, 9, 2005.

22. Leila Ribeiro, Fernando Lúıs Dotti, Simone André da Costa, and Fabiane Cristine
Dillenburg. Towards theorem proving graph grammars using Event-B. ECEASST,
30, 2010. Proc. of International Colloquium on Graph and Model Transformation
(GraMoT).

23. Martin Strecker. Interactive and automated proofs for graph transformations.
Technical report, IRIT/ Université de Toulouse, 2012. http://www.irit.fr/

~Martin.Strecker/Publications/proofs_graph_transformations.html.

24. Martin Strecker. Locality in reasoning about graph transformations. In Andy
Schürr, Dániel Varró, and Gergely Varró, editors, Applications of Graph Trans-
formations with Industrial Relevance, volume 7233 of Lecture Notes in Computer
Science, pages 169–181. Springer Berlin Heidelberg, 2012.

25. Hanh Nhi Tran and Christian Percebois. Towards a rule-level verification frame-
work for property-preserving graph transformations. In Proceeding of the IEEE
ICST Workshop on Verification and Validation of Model Transformations, April
2012.

26. Dániel Varró. Automated formal verification of visual modeling languages by model
checking. Journal of Software and Systems Modeling, 3(2):85–113, May 2004.

27. Dániel Varró and András Balogh. The model transformation language of the VI-
ATRA2 framework. Science of Computer Programming, 68(3):214 – 234, 2007.
Special Issue on Model Transformation.

http://www.irit.fr/~Martin.Strecker/Publications/proofs_graph_transformations.html
http://www.irit.fr/~Martin.Strecker/Publications/proofs_graph_transformations.html

28. Greta Yorsh, Alexander Moshe Rabinovich, Mooly Sagiv, Antoine Meyer, and
Ahmed Bouajjani. A logic of reachable patterns in linked data-structures. J.
Log. Algebr. Program, 73(1-2):111–142, 2007.

29. Eduardo Zambon and Arend Rensink. Using graph transformations and graph
abstractions for software verification. Electronic Communications of the EASST,
38, August 2011.

	Proving preservation of transitivity invariants in model transformations

